Advertisement

On KLT and SYM-supergravity relations from 5-point 1-loop amplitudes

  • Horatiu Nastase
  • Howard J. Schnitzer
Article

Abstract

We derive a new non-singular tree-level KLT relation for the n = 5-point amplitudes, with manifest 2(n − 2)! symmetry, using information from one-loop amplitudes and IR divergences, and speculate how one might extend it to higher n-point functions. We show that the subleading-color \( \mathcal{N} = 4 \) SYM 5-point amplitude has leading IR divergence of 1/ϵ, which is essential for the applications of this paper. We also propose a relation between the subleading-color \( \mathcal{N} = 4 \) SYM and \( \mathcal{N} = 8 \) supergravity 1-loop 5-point amplitudes, valid for the IR divergences and possibly for the whole amplitudes, using techniques similar to those used in our derivation of the new KLT relation.

Keywords

Supersymmetric gauge theory Extended Supersymmetry 1/N Expansion Supergravity Models 

References

  1. [1]
    H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    F.A. Berends, W.T. Giele and H. Kuijf, On relations between multi-gluon and multigraviton scattering, Phys. Lett. B 211 (1988) 91 [SPIRES].ADSGoogle Scholar
  3. [3]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367] [SPIRES].ADSGoogle Scholar
  4. [4]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Proof of gravity and Yang-Mills amplitude relations, JHEP 09 (2010) 067 [arXiv:1007.3111] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    H. Elvang and D.Z. Freedman, Note on graviton MHV amplitudes, JHEP 05 (2008) 096 [arXiv:0710.1270] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    S. Ananth and S. Theisen, KLT relations from the Einstein-Hilbert Lagrangian, Phys. Lett. B 652 (2007) 128 [arXiv:0706.1778] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    B. Feng and S. He, KLT and new relations for N = 8 SUGRA and N = 4 SYM, JHEP 09 (2010) 043 [arXiv:1007.0055] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    D. Vaman and Y.-P. Yao, Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes, JHEP 11 (2010) 028 [arXiv:1007.3475] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [SPIRES].ADSGoogle Scholar
  13. [13]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multi-leg one-loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/ 9403226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, New identities among gauge theory amplitudes, Phys. Lett. B 691 (2010) 268 [arXiv:1006.3214] [SPIRES].MathSciNetADSGoogle Scholar
  17. [17]
    B. Feng, S. He, R. Huang and Y. Jia, Note on new KLT relations, JHEP 10 (2010) 109 [arXiv:1008.1626] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    H. Tye and Y. Zhang, Comment on the identities of the gluon tree amplitudes, arXiv:1007.0597 [SPIRES].
  19. [19]
    H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018 [arXiv:0809.0376] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR behavior in N = 8 supergravity, Nucl. Phys. B 805 (2008) 40 [arXiv:0805.2347] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys. B 379 (1992) 451 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    Z. Bern, L.J. Dixon and R. Roiban, Is N = 8 supergravity ultraviolet finite?, Phys. Lett. B 644 (2007) 265 [hep-th/0611086] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    S.G. Naculich and H.J. Schnitzer, IR divergences and Regge limits of subleading-color contributions to the four-gluon amplitude in N = 4 SYM theory, JHEP 10 (2009) 048 [arXiv:0907.1895] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    D.C. Dunbar and P.S. Norridge, Infinities within graviton scattering amplitudes, Class. Quant. Grav. 14 (1997) 351 [hep-th/9512084] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  26. [26]
    S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  1. 1.Instituto de Física TeóricaUNESP-Universidade Estadual PaulistaSao PauloBrazil
  2. 2.Theoretical Physics Group, Martin Fisher School of PhysicsBrandeis UniversityWalthamU.S.A.

Personalised recommendations