Lepton number violation from colored states at the LHC

  • Pavel Fileviez Pérez
  • Tao Han
  • Sogee Spinner
  • Maike K. Trenkel


The possibility to search for lepton number violating signals at the Large Hadron Collider (LHC) in the colored seesaw scenario is investigated. In this context the fields that generate neutrino masses at the one-loop level are scalar and Majorana fermionic color-octets of SU(3) C . Due to the QCD strong interaction these states may be produced at the LHC with a favorable rate. We study the production mechanisms and decays relevant to search for lepton number violation signals in the channels with same-sign dileptons. In the simplest case when the two fermionic color-octets are degenerate in mass, one could use their decays to distinguish between the neutrino spectra. We find that for fermionic octets with mass up to about 1 TeV the number of same-sign dilepton events is larger than the standard model background indicating a promising signal for new physics.


Beyond Standard Model Phenomenological Models 


  1. [1]
    P. Fileviez Pérez and M.B. Wise, On the Origin of Neutrino Masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [SPIRES].ADSGoogle Scholar
  2. [2]
    P. Minkowski, μeγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  3. [3]
    T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, O. Sawada et al. eds., KEK report 79-18, Tsukuba Japan (1979), pg. 95.Google Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, in Supergravity, P. van Nieuwenhuizen et al. eds., North-Holland, Amsterdam Netherlands (1979), pg. 315.Google Scholar
  5. [5]
    S.L. Glashow, in Quarks and Leptons, Cargèse lectures, M. Lévy et al. eds., Plenum, New York U.S.A. (1980), pg. 707.Google Scholar
  6. [6]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    W.-Y. Keung and G. Senjanović, Majorana Neutrinos And The Production Of The Right-Handed Charged Gauge Boson, Phys. Rev. Lett. 50 (1983) 1427 [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    T. Han and B. Zhang, Signatures for Majorana neutrinos at hadron colliders, Phys. Rev. Lett. 97 (2006) 171804 [hep-ph/0604064] [SPIRES].ADSCrossRefGoogle Scholar
  9. [9]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].ADSCrossRefGoogle Scholar
  10. [10]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [SPIRES].ADSCrossRefGoogle Scholar
  11. [11]
    J. Kersten and A.Y. Smirnov, Right-Handed Neutrinos at LHC and the Mechanism of Neutrino Mass Generation, Phys. Rev. D 76 (2007) 073005 [arXiv:0705.3221] [SPIRES].ADSGoogle Scholar
  12. [12]
    F. del Aguila, J.A. Aguilar-Saavedra and R. Pittau, Heavy neutrino signals at large hadron colliders, JHEP 10 (2007) 047 [hep-ph/0703261] [SPIRES].CrossRefGoogle Scholar
  13. [13]
    P. Fileviez Pérez, T. Han and T. Li, Testability of Type I Seesaw at the CERN LHC: Revealing the Existence of the B-L Symmetry, Phys. Rev. D 80 (2009) 073015 [arXiv:0907.4186] [SPIRES].ADSGoogle Scholar
  14. [14]
    F. del Aguila and J.A. Aguilar-Saavedra, Like-sign dilepton signals from a leptophobic Z′ boson, JHEP 11 (2007) 072 [arXiv:0705.4117] [SPIRES].CrossRefGoogle Scholar
  15. [15]
    W. Konetschny and W. Kummer, Nonconservation of Total Lepton Number with Scalar Bosons, Phys. Lett. B 70 (1977) 433 [SPIRES].ADSGoogle Scholar
  16. [16]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].ADSGoogle Scholar
  17. [17]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].ADSCrossRefGoogle Scholar
  18. [18]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  19. [19]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  20. [20]
    P. Fileviez Pérez, T. Han, G.-Y. Huang, T. Li and K. Wang, Testing a Neutrino Mass Generation Mechanism at the Large Hadron Collider, Phys. Rev. D 78 (2008) 071301 [arXiv:0803.3450] [SPIRES].ADSGoogle Scholar
  21. [21]
    P. Fileviez Pérez, T. Han, G.-y. Huang, T. Li and K. Wang, Neutrino Masses and the LHC: Testing Type II Seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [SPIRES].ADSGoogle Scholar
  22. [22]
    E.J. Chun, K.Y. Lee and S.C. Park, Testing Higgs triplet model and neutrino mass patterns, Phys. Lett. B 566 (2003) 142 [hep-ph/0304069] [SPIRES].ADSGoogle Scholar
  23. [23]
    J. Garayoa and T. Schwetz, Neutrino mass hierarchy and Majorana CP phases within the Higgs triplet model at the LHC, JHEP 03 (2008) 009 [arXiv:0712.1453] [SPIRES].ADSCrossRefGoogle Scholar
  24. [24]
    A.G. Akeroyd, M. Aoki and H. Sugiyama, Probing Majorana Phases and Neutrino Mass Spectrum in the Higgs Triplet Model at the LHC, Phys. Rev. D 77 (2008) 075010 [arXiv:0712.4019] [SPIRES].ADSGoogle Scholar
  25. [25]
    K. Huitu, J. Maalampi, A. Pietila and M. Raidal, Doubly charged Higgs at LHC, Nucl. Phys. B 487 (1997) 27 [hep-ph/9606311] [SPIRES].ADSCrossRefGoogle Scholar
  26. [26]
    M. Kadastik, M. Raidal and L. Rebane, Direct determination of neutrino mass parameters at future colliders, Phys. Rev. D 77 (2008) 115023 [arXiv:0712.3912] [SPIRES].ADSGoogle Scholar
  27. [27]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [SPIRES].Google Scholar
  28. [28]
    R. Franceschini, T. Hambye and A. Strumia, Type-III see-saw at LHC, Phys. Rev. D 78 (2008) 033002 [arXiv:0805.1613] [SPIRES].ADSGoogle Scholar
  29. [29]
    A. Arhrib et al., Collider Signatures for Heavy Lepton Triplet in Type I+III Seesaw, Phys. Rev. D 82 (2010) 053004 [arXiv:0904.2390] [SPIRES].ADSGoogle Scholar
  30. [30]
    T. Li and X.-G. He, Neutrino Masses and Heavy Triplet Leptons at the LHC: Testability of Type III Seesaw, Phys. Rev. D 80 (2009) 093003 [arXiv:0907.4193] [SPIRES].ADSGoogle Scholar
  31. [31]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [SPIRES].ADSCrossRefGoogle Scholar
  32. [32]
    B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [SPIRES].ADSCrossRefGoogle Scholar
  33. [33]
    P. Fileviez Pérez, Renormalizable Adjoint SU(5), Phys. Lett. B 654 (2007) 189 [hep-ph/0702287] [SPIRES].ADSGoogle Scholar
  34. [34]
    P. Fileviez Pérez, Supersymmetric Adjoint SU(5), Phys. Rev. D 76 (2007) 071701 [arXiv:0705.3589] [SPIRES].Google Scholar
  35. [35]
    P. Fileviez Pérez, Type III Seesaw and Left-Right Symmetry, JHEP 03 (2009) 142 [arXiv:0809.1202] [SPIRES].ADSCrossRefGoogle Scholar
  36. [36]
    P. Fileviez Pérez, The Origin of Neutrino Masses and Physics Beyond the Standard Model, AIP Conf. Proc. 1222 (2010) 3 [arXiv:0909.2698] [SPIRES].ADSCrossRefGoogle Scholar
  37. [37]
    A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass and Oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [SPIRES].ADSGoogle Scholar
  38. [38]
    R. Barbier et al., R-parity violating supersymmetry, Phys. Rept. 420 (2005) 1 [hep-ph/0406039] [SPIRES].ADSCrossRefGoogle Scholar
  39. [39]
    P. Nath et al., The Hunt for New Physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [SPIRES].CrossRefGoogle Scholar
  40. [40]
    W. Porod, LHC phenomenology of supersymmetric models beyond the MSSM, J. Phys. Conf. Ser. 259 (2010) 012002 [arXiv:1010.4737] [SPIRES].ADSCrossRefGoogle Scholar
  41. [41]
    F. de Campos et al., LHC signals for neutrino mass model in bilinear R-parity violating mAMSB, Phys. Rev. D 77 (2008) 115025 [arXiv:0803.4405] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    A.V. Manohar and M.B. Wise, Flavor changing neutral currents, an extended scalar sector and the Higgs production rate at the LHC, Phys. Rev. D 74 (2006) 035009 [hep-ph/0606172] [SPIRES].ADSGoogle Scholar
  43. [43]
    M. Losada and S. Tulin, Color Octet Leptogenesis, arXiv:0909.0648 [SPIRES].
  44. [44]
    Y. Liao and J.-Y. Liu, Radiative and flavor-violating transitions of leptons from interactions with color-octet particles, Phys. Rev. D 81 (2010) 013004 [arXiv:0911.3711] [SPIRES].ADSGoogle Scholar
  45. [45]
    M.I. Gresham and M.B. Wise, Color Octet Scalar Production at the LHC, Phys. Rev. D 76 (2007) 075003 [arXiv:0706.0909] [SPIRES].ADSGoogle Scholar
  46. [46]
    P. Fileviez Pérez, R. Gavin, T. McElmurry and F. Petriello, Grand Unification and Light Color-Octet Scalars at the LHC, Phys. Rev. D 78 (2008) 115017 [arXiv:0809.2106] [SPIRES].ADSGoogle Scholar
  47. [47]
    M. Gerbush, T.J. Khoo, D.J. Phalen, A. Pierce and D. Tucker-Smith, Color-octet scalars at the LHC, Phys. Rev. D 77 (2008) 095003 [arXiv:0710.3133] [SPIRES].ADSGoogle Scholar
  48. [48]
    A.R. Zerwekh, C.O. Dib and R. Rosenfeld, A New signature for color octet pseudoscalars at the CERN LHC, Phys. Rev. D 77 (2008) 097703 [arXiv:0802.4303] [SPIRES].ADSGoogle Scholar
  49. [49]
    A. Idilbi, C. Kim and T. Mehen, Factorization and resummation for single color-octet scalar production at the LHC, Phys. Rev. D 79 (2009) 114016 [arXiv:0903.3668] [SPIRES].ADSGoogle Scholar
  50. [50]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    T. Schwetz, M. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 11301 [arXiv:0808.2016] [SPIRES].CrossRefGoogle Scholar
  52. [52]
    M.C. Gonzalez-Garcia and M. Maltoni, Phenomenology with Massive Neutrinos, Phys. Rept. 460 (2008) 1 [arXiv:0704.1800] [SPIRES].ADSCrossRefGoogle Scholar
  53. [53]
    A. Ibarra and G.G. Ross, Neutrino phenomenology: The case of two right handed neutrinos, Phys. Lett. B 591 (2004) 285 [hep-ph/0312138] [SPIRES].ADSGoogle Scholar
  54. [54]
    MEGA collaboration, M.L. Brooks et al., New Limit for the Family-Number Non-conserving Decay mu +e + γ, Phys. Rev. Lett. 83 (1999) 1521 [hep-ex/9905013] [SPIRES].ADSCrossRefGoogle Scholar
  55. [55]
    MEGA collaboration, M. Ahmed et al., Search for the lepton-family-number nonconserving decay μe + γ, Phys. Rev. D 65 (2002) 112002 [hep-ex/0111030] [SPIRES].ADSGoogle Scholar
  56. [56]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar
  57. [57]
    P. Richardson, Simulations of R-parity violating SUSY models, hep-ph/0101105 [SPIRES].
  58. [58]
    W. Beenakker, R. Höpker, M. Spira and P.M. Zerwas, Squark and gluino production at hadron colliders, Nucl. Phys. B 492 (1997) 51 [hep-ph/9610490] [SPIRES].ADSGoogle Scholar
  59. [59]
    H. Baer, K.-m. Cheung and J.F. Gunion, A Heavy gluino as the lightest supersymmetric particle, Phys. Rev. D 59 (1999) 075002 [hep-ph/9806361] [SPIRES].ADSGoogle Scholar
  60. [60]
    A. Mafi and S. Raby, An analysis of a Heavy Gluino LSP at CDF: The Heavy Gluino Window, Phys. Rev. D 62 (2000) 035003 [hep-ph/9912436] [SPIRES].ADSGoogle Scholar
  61. [61]
    J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    V. Barger, W.-Y. Keung and B. Yencho, Triple-Top Signal of New Physics at the LHC, Phys. Lett. B 687 (2010) 70 [arXiv:1001.0221] [SPIRES].ADSGoogle Scholar
  63. [63]
    B. Lillie, J. Shu and T.M.P. Tait, Top Compositeness at the Tevatron and LHC, JHEP 04 (2008) 087 [arXiv:0712.3057] [SPIRES].ADSCrossRefGoogle Scholar
  64. [64]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to \( pp \to t\bar{t}\,b\bar{b} + X \) at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [SPIRES].ADSCrossRefGoogle Scholar
  65. [65]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO Wishlist: \( pp \to t\bar{t}\,b\bar{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [SPIRES].ADSCrossRefGoogle Scholar
  66. [66]
    T. Plehn, M. Spannowsky, M. Takeuchi and D. Zerwas, Stop Reconstruction with Tagged Tops, JHEP 10 (2010) 078 [arXiv:1006.2833] [SPIRES].ADSCrossRefGoogle Scholar
  67. [67]
    J.A. Aguilar-Saavedra, Heavy lepton pair production at LHC: model discrimination with multi-lepton signals, Nucl. Phys. B 828 (2010) 289 [arXiv:0905.2221] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Pavel Fileviez Pérez
    • 1
  • Tao Han
    • 1
  • Sogee Spinner
    • 1
  • Maike K. Trenkel
    • 1
  1. 1.Department of PhysicsUniversity of Wisconsin-MadisonMadisonU.S.A.

Personalised recommendations