Long-lived charged Higgs at LHC as a probe of scalar dark matter



We study inert charged Higgs boson H ± production and decays at LHC experiments in the context of constrained scalar dark matter model (CSDMM). In the CSDMM the mass spectrum of the inert doublet and singlet scalars is predicted from the GUT scale initial conditions via RGE evolution. We compute the cross sections of processes ppH + H , H ± S i 0 , where S i 0 are neutral scalar particles, at the LHC experiments. We show that for light H ± the first process may receive a sizable contribution from the top quark mediated 1-loop diagram with Higgs boson in s-channel. In a significant fraction of the parameter space H ± are long-lived because their decays to predominantly singlet scalar dark matter (DM) and next-to-lightest (NL) scalar, H ±S DM, NL f f′, are suppressed by the small singlet-doublet mixing angle and by the moderate mass difference \( \Delta M = {M_{{H^{+} }}} - {M_{\text{DM}}} \). The experimentally measurable displaced vertex in H ± decays to leptons and/or jets and missing energy allows one to discover the H + H signal over the huge W + W background. If, however, H ± are short-lived, the subsequent decays \( {S_{\text{NL}}} \to {S_{\text{DM}}}f \bar{f} \) necessarily produce additional displaced vertices that allow to reconstruct the full H ± decay chain. We propose benchmark points for studies of this scenario at the LHC.


Phenomenological Models 


  1. [1]
    WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    B. Patt and F. Wilczek, Higgs-field portal into hidden sectors, hep-ph/0605188 [SPIRES].
  3. [3]
    J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637 [hep-ph/0702143] [SPIRES].ADSGoogle Scholar
  4. [4]
    C.P. Burgess, M. Pospelov and T. ter Veldhuis, The minimal model of nonbaryonic dark matter: a singlet scalar, Nucl. Phys. B 619 (2001) 709 [hep-ph/0011335] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf and G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet, Phys. Rev. D 77 (2008) 035005 [arXiv:0706.4311] [SPIRES].ADSGoogle Scholar
  6. [6]
    V. Barger, P. Langacker, M. McCaskey, M. Ramsey-Musolf and G. Shaughnessy, Complex singlet extension of the standard model, Phys. Rev. D 79 (2009) 015018 [arXiv:0811.0393] [SPIRES].ADSGoogle Scholar
  7. [7]
    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [SPIRES].ADSGoogle Scholar
  8. [8]
    E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [SPIRES].ADSGoogle Scholar
  9. [9]
    R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [SPIRES].ADSGoogle Scholar
  10. [10]
    L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [SPIRES].ADSGoogle Scholar
  11. [11]
    M. Kadastik, K. Kannike and M. Raidal, Less-dimensions and matter parity as the origin of dark matter, Phys. Rev. D 81 (2010) 015002 [arXiv:0903.2475] [SPIRES].ADSGoogle Scholar
  12. [12]
    M. Kadastik, K. Kannike and M. Raidal, Dark matter as the signal of grand unification, Phys. Rev. D 80 (2009) 085020 [Erratum ibid. D 81 (2010) 029903] [arXiv:0907.1894] [SPIRES].ADSGoogle Scholar
  13. [13]
    H. Fritzsch and P. Minkowski, Unified interactions of leptons and hadrons, Annals. Phys. 93 (1975) 193 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    L.M. Krauss and F. Wilczek, Discrete gauge symmetry in continuum theories, Phys. Rev. Lett. 62 (1989) 1221 [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    S.P. Martin, Some simple criteria for gauged R-parity, Phys. Rev. D 46 (1992) 2769 [hep-ph/9207218] [SPIRES].ADSGoogle Scholar
  16. [16]
    M. De Montigny and M. Masip, Discrete gauge symmetries in supersymmetric grand unified models, Phys. Rev. D 49 (1994) 3734 [hep-ph/9309312] [SPIRES].ADSGoogle Scholar
  17. [17]
    P. Minkowski, μ → eγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  18. [18]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, Tsukuba, Japan, 13–14 Feb 1979.Google Scholar
  19. [19]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Nieuwenhuizen and D.Z. Freedman eds., North-Holland (1979).Google Scholar
  20. [20]
    S.L. Glashow, The future of elementary particle physics, NATO Adv. Study Inst. Ser. B Phys. 59 (1979) 687.Google Scholar
  21. [21]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    M. Fukugita and T. Yanagida, Baryogenesis without grand unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  23. [23]
    T. Hambye and M.H.G. Tytgat, Electroweak symmetry breaking induced by dark matter, Phys. Lett. B 659 (2008) 651 [arXiv:0707.0633] [SPIRES].ADSGoogle Scholar
  24. [24]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, EWSB from the soft portal into dark matter and prediction for direct detection, Phys. Rev. Lett. 104 (2010) 201301 [arXiv:0912.2729] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    G.R. Farrar and P. Fayet, Phenomenology of the production, decay and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575 [SPIRES].ADSGoogle Scholar
  26. [26]
    M.C. Bento, L.J. Hall and G.G. Ross, Generalized matter parities from the superstring, Nucl. Phys. B 292 (1987) 400 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    L.E. Ibáñez and G.G. Ross, Discrete gauge symmetry anomalies, Phys. Lett. B 260 (1991) 291 [SPIRES].ADSGoogle Scholar
  28. [28]
    Q.-H. Cao, E. Ma and G. Rajasekaran, Observing the dark scalar doublet and its impact on the standard-model Higgs boson at colliders, Phys. Rev. D 76 (2007) 095011 [arXiv:0708.2939] [SPIRES].ADSGoogle Scholar
  29. [29]
    E. Dolle, X. Miao, S. Su and B. Thomas, Dilepton signals in the inert doublet model, Phys. Rev. D 81 (2010) 035003 [arXiv:0909.3094] [SPIRES].ADSGoogle Scholar
  30. [30]
    X. Miao, S. Su and B. Thomas, Trilepton signals in the inert doublet model, Phys. Rev. D 82 (2010) 035009 [arXiv:1005.0090] [SPIRES].ADSGoogle Scholar
  31. [31]
    M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of dark matter direct detection results on LHC physics, arXiv:0912.3797 [SPIRES].
  32. [32]
    M. Frigerio and T. Hambye, Dark matter stability and unification without supersymmetry, Phys. Rev. D 81 (2010) 075002 [arXiv:0912.1545] [SPIRES].ADSGoogle Scholar
  33. [33]
    S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D7 (1973) 1888 [SPIRES].ADSGoogle Scholar
  34. [34]
    A. Krause, T. Plehn, M. Spira and P.M. Zerwas, Production of charged Higgs boson pairs in gluon gluon collisions, Nucl. Phys. B 519 (1998) 85 [hep-ph/9707430] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide [SPIRES].
  36. [36]
    S. Alekhin, K. Melnikov and F. Petriello, Fixed target Drell-Yan data and NNLO QCD fits of parton distribution functions, Phys. Rev. D 74 (2006) 054033 [hep-ph/0606237] [SPIRES].ADSGoogle Scholar
  37. [37]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [SPIRES].MATHCrossRefADSGoogle Scholar
  38. [38]
    G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs2.1, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [SPIRES].MATHCrossRefADSGoogle Scholar
  39. [39]
    CMS collaboration, G.L. Bayatian et al., CMS technical design report, volume II: physics performance, J. Phys. G 34 (2007) 995 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • K. Huitu
    • 1
    • 2
  • K. Kannike
    • 3
  • A. Racioppi
    • 3
  • M. Raidal
    • 1
    • 3
  1. 1.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  2. 2.Helsinki Institute of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.National Institute of Chemical Physics and BiophysicsTallinnEstonia

Personalised recommendations