Lepton flavor violation in complex SUSY seesaw models with nearly tribimaximal mixing

  • Frank F. Deppisch
  • Florian Plentinger
  • Gerhart Seidl


We survey the lepton flavor violation branching ratios Br(μ), Br(τμγ), and Br(τ) in mSUGRA for a broad class of lepton mass matrix textures that give nearly tribimaximal lepton mixing. Small neutrino masses are generated by the type-I seesaw mechanism with non-degenerate right-handed neutrino masses. The textures exhibit a hierarchical mass pattern and can be understood from flavor models giving rise to large leptonic mixing. We study the branching ratios for the most general CP-violating forms of the textures. It is demonstrated that the branching ratios can be enhanced by 2-3 orders of magnitude as compared to the CP-conserving case. The branching ratios exhibit, however, a strong dependence on the choice of the phases in the Lagrangian which affects the significance of flavor models. In particular, for general CP-phases, the lepton flavor violating rates appear to be essentially uncorrelated with the possible high-and low-energy lepton mixing parameters, such as the reactor angle.


Rare Decays Neutrino Physics Supersymmetric Standard Model Beyond Standard Model 


  1. [1]
    Super-Kamiokande collaboration, S. Fukuda et al., Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [SPIRES].ADSGoogle Scholar
  2. [2]
    SNO collaboration, Q.R. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302 [nucl-ex/0204009] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, arXiv:1009.4771 [SPIRES].
  5. [5]
    KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [SPIRES].ADSGoogle Scholar
  7. [7]
    K2K collaboration, E. Aliu et al., Evidence for muon neutrino oscillation in an accelerator-based experiment, Phys. Rev. Lett. 94 (2005) 081802 [hep-ex/0411038] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    T. Schwetz, M. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    B. Pontecorvo, Mesonium and antimesonium, Sov. Phys. JETP 6 (1957) 429 [SPIRES].ADSGoogle Scholar
  10. [10]
    Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].MATHCrossRefADSGoogle Scholar
  11. [11]
    P.F. Harrison, D.H. Perkins and W.G. Scott, A redetermination of the neutrino mass-squared difference in tri-maximal mixing with terrestrial matter effects, Phys. Lett. B 458 (1999) 79 [hep-ph/9904297] [SPIRES].ADSGoogle Scholar
  12. [12]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  13. [13]
    F. Plentinger and W. Rodejohann, Deviations from tribimaximal neutrino mixing, Phys. Lett. B 625 (2005) 264 [hep-ph/0507143] [SPIRES].ADSGoogle Scholar
  14. [14]
    D. Majumdar and A. Ghosal, Probing deviations from tri-bimaximal mixing through ultra high energy neutrino signals, Phys. Rev. D 75 (2007) 113004 [hep-ph/0608334] [SPIRES].ADSGoogle Scholar
  15. [15]
    A.H. Chan, H. Fritzsch, S. Luo and Z.-z. Xing, Deviations from Tri-bimaximal Neutrino Mixing in Type-II Seesaw and Leptogenesis, Phys. Rev. D 76 (2007) 073009 [arXiv:0704.3153] [SPIRES].ADSGoogle Scholar
  16. [16]
    S.F. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [SPIRES].ADSGoogle Scholar
  17. [17]
    Y. Shimizu and R. Takahashi, Deviations from Tri-Bimaximality and Quark-Lepton Complementarity, arXiv:1009. 5504 [SPIRES].
  18. [18]
    Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].
  19. [19]
    Z.-z. Xing, H. Zhang and S. Zhou, Nearly tri-bimaximal neutrino mixing and CP-violation from μ − τ symmetry breaking, Phys. Lett. B 641 (2006) 189 [hep-ph/0607091] [SPIRES].ADSGoogle Scholar
  20. [20]
    E. Ma, Near Tribimaximal Neutrino Mixing with Delta(27) Symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [SPIRES].ADSGoogle Scholar
  21. [21]
    A. Mondragon, M. Mondragon and E. Peinado, Nearly tri-bimaximal mixing in the S 3 flavour symmetry, AIP Conf. Proc. 1026 (2008) 164 [arXiv:0712.2488] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  23. [23]
    T. Yanagida, in Proceedings of the Workshop on the Unified Theory and Baryon Number in the Universe, KEK, Tsukuba Japan (1979).Google Scholar
  24. [24]
    M. Gell-Mann, P. Ramond and R. Slansky, in Proceedings of the Workshop on Supergravity, Stony Brook, New York U.S.A. (1979).Google Scholar
  25. [25]
    S.L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargese Summer Institute on Quarks and Leptons, New York U.S.A. (1980).Google Scholar
  26. [26]
    M. Magg and C. Wetterich, Neutrino Mass Problem And Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].ADSGoogle Scholar
  27. [27]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].ADSGoogle Scholar
  29. [29]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  30. [30]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    H. Georgi, H.R. Quinn and S. Weinberg, Hierarchy of Interactions in Unified Gauge Theories, Phys. Rev. Lett. 33 (1974) 451 [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [SPIRES].ADSGoogle Scholar
  33. [33]
    S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    F. Borzumati and A. Masiero, Large Muon and electron Number Violations in Supergravity Theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].ADSGoogle Scholar
  36. [36]
    W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].MATHCrossRefADSGoogle Scholar
  37. [37]
    E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    Y. Nir, Introduction to leptogenesis, hep-ph/0702199 [SPIRES].
  39. [39]
    M.-C. Chen, TASI 2006 Lectures on Leptogenesis, hep-ph/0703087 [SPIRES].
  40. [40]
    S. Albino, F. Deppisch and R. Rückl, Supersymmetric lepton flavor violation and leptogenesis, hep-ph/0606226 [SPIRES].
  41. [41]
    K.A. Hochmuth and W. Rodejohann, Low and High Energy Phenomenology of Quark-Lepton Complementarity Scenarios, Phys. Rev. D 75 (2007) 073001 [hep-ph/0607103] [SPIRES].ADSGoogle Scholar
  42. [42]
    C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    A.Y. Smirnov, Neutrinos: ’...Annus mirabilis’, hep-ph/0402264 [SPIRES].
  44. [44]
    M. Raidal, Relation between the neutrino and quark mixing angles and grand unification, Phys. Rev. Lett. 93 (2004) 161801 [hep-ph/0404046] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    H. Minakata and A.Y. Smirnov, Neutrino Mixing and Quark-Lepton Complementarity, Phys. Rev. D 70 (2004) 073009 [hep-ph/0405088] [SPIRES].ADSGoogle Scholar
  46. [46]
    F. Plentinger, G. Seidl and W. Winter, Systematic parameter space search of extended quark-lepton complementarity, Nucl. Phys. B 791 (2008) 60 [hep-ph/0612169] [SPIRES].CrossRefADSGoogle Scholar
  47. [47]
    F. Plentinger, G. Seidl and W. Winter, The Seesaw Mechanism in Quark-Lepton Complementarity, Phys. Rev. D 76 (2007) 113003 [arXiv:0707.2379] [SPIRES].ADSGoogle Scholar
  48. [48]
    F. Plentinger, G. Seidl and W. Winter, Group Space Scan of Flavor Symmetries for Nearly Tribimaximal Lepton Mixing, JHEP 04 (2008) 077 [arXiv:0802.1718] [SPIRES].CrossRefGoogle Scholar
  49. [49]
    F. Plentinger and G. Seidl, Mapping out SU(5) GUTs with non-Abelian discrete flavor symmetries, Phys. Rev. D 78 (2008) 045004 [arXiv:0803.2889] [SPIRES].ADSGoogle Scholar
  50. [50]
    W. Winter, Neutrino Oscillation Observables from Mass Matrix Structure, Phys. Lett. B 659 (2008) 275 [arXiv:0709.2163] [SPIRES].ADSGoogle Scholar
  51. [51]
    S. Niehage and W. Winter, Entangled maximal mixings in U PMNS = U l U ν and a connection to complex mass textures, Phys. Rev. D 78 (2008) 013007 [arXiv:0804.1546] [SPIRES].ADSGoogle Scholar
  52. [52]
    G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A 4 Flavour Symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A 4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    F. Bazzocchi, L. Merlo and S. Morisi, Fermion Masses and Mixings in a S 4 -based Model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [SPIRES].CrossRefADSGoogle Scholar
  57. [57]
    F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal Neutrino Mixing and Quark Masses from a Discrete Flavour Symmetry, Nucl. Phys. B 775 (2007) 120 [Erratum ibid. 836 (2010) 127] [hep-ph/0702194] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].ADSGoogle Scholar
  59. [59]
    K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].ADSGoogle Scholar
  60. [60]
    M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [SPIRES].ADSGoogle Scholar
  61. [61]
    P.H. Frampton and T.W. Kephart, Simple nonAbelian finite flavor groups and fermion masses, Int. J. Mod. Phys. A 10 (1995) 4689 [hep-ph/9409330] [SPIRES].MathSciNetADSGoogle Scholar
  62. [62]
    A. Aranda, C.D. Carone and R.F. Lebed, Maximal neutrino mixing from a minimal flavor symmetry, Phys. Rev. D 62 (2000) 016009 [hep-ph/0002044] [SPIRES].ADSGoogle Scholar
  63. [63]
    P.D. Carr and P.H. Frampton, Group theoretic bases for tribimaximal mixing, hep-ph/0701034 [SPIRES].
  64. [64]
    A. Aranda, Neutrino mixing from the double tetrahedral group T , Phys. Rev. D 76 (2007) 111301 [arXiv:0707.3661] [SPIRES].ADSGoogle Scholar
  65. [65]
    J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].CrossRefADSGoogle Scholar
  66. [66]
    Particle Data Group collaboration, S. Eidelman et al., Review of particle physics, Phys. Lett. B 592 (2004) 1 [SPIRES].ADSGoogle Scholar
  67. [67]
    BABAR collaboration, B. Aubert et al., Search for lepton flavor violation in the decay τ → μγ, Phys. Rev. Lett. 95 (2005) 041802 [hep-ex/0502032] [SPIRES].CrossRefADSGoogle Scholar
  68. [68]
    BABAR collaboration, B. Aubert et al., Search for lepton flavor violation in the decay τ ± → e ± γ, Phys. Rev. Lett. 96 (2006) 041801 [hep-ex/0508012] [SPIRES].CrossRefADSGoogle Scholar
  69. [69]
    MEG collaboration, D. Nicolo, The MEG experiment: status and perspectives, AIP Conf. Proc. 1222 (2010) 403 [SPIRES].CrossRefADSGoogle Scholar
  70. [70]
    J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].ADSGoogle Scholar
  71. [71]
    F. Deppisch, H. Päs, A. Redelbach, R. Rückl and Y. Shimizu, Probing the Majorana mass scale of right-handed neutrinos in mSUGRA, Eur. Phys. J. C 28 (2003) 365 [hep-ph/0206122] [SPIRES].ADSGoogle Scholar
  72. [72]
    K. Agashe and M. Graesser, Signals of supersymmetric lepton flavor violation at the LHC, Phys. Rev. D 61 (2000) 075008 [hep-ph/9904422] [SPIRES].ADSGoogle Scholar
  73. [73]
    Y.M. Andreev, S.I. Bityukov, N.V. Krasnikov and A.N. Toropin, Using the e ± μ + ET miss signature in the search for supersymmetry and lepton flavour violation in neutralino decays, Phys. Atom. Nucl. 70 (2007) 1717 [hep-ph/0608176] [SPIRES].CrossRefADSGoogle Scholar
  74. [74]
    A. Bartl et al., Test of lepton flavour violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [SPIRES].CrossRefADSGoogle Scholar
  75. [75]
    F. Deppisch, Lepton Flavor Violation at the LHC, arXiv:0710.2525 [SPIRES].
  76. [76]
    M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [SPIRES].CrossRefADSGoogle Scholar
  77. [77]
    H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [SPIRES].ADSGoogle Scholar
  78. [78]
    R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [SPIRES].ADSGoogle Scholar
  79. [79]
    K.S. Babu and R.N. Mohapatra, Predictive schemes for bimaximal neutrino mixings, Phys. Lett. B 532 (2002) 77 [hep-ph/0201176] [SPIRES].ADSGoogle Scholar
  80. [80]
    T. Ohlsson and G. Seidl, A flavor symmetry model for bilarge leptonic mixing and the lepton masses, Nucl. Phys. B 643 (2002) 247 [hep-ph/0206087] [SPIRES].CrossRefADSGoogle Scholar
  81. [81]
    T. Kitabayashi and M. Yasue, S(2L) permutation symmetry for left-handed mu and tau families and neutrino oscillations in an SU(3)L x U(1)N gauge model, Phys. Rev. D 67 (2003) 015006 [hep-ph/0209294] [SPIRES].ADSGoogle Scholar
  82. [82]
    W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 [hep-ph/0305046] [SPIRES].ADSGoogle Scholar
  83. [83]
    Y. Koide, Universal texture of quark and lepton mass matrices with an extended flavor 2 ↔ 3 symmetry, Phys. Rev. D 69 (2004) 093001 [hep-ph/0312207] [SPIRES].ADSGoogle Scholar
  84. [84]
    A.S. Joshipura, Universal 2-3 symmetry, Eur. Phys. J. C 53 (2008) 77 [hep-ph/0512252] [SPIRES].ADSGoogle Scholar
  85. [85]
    N. Nimai Singh, H. Zeen Devi and M. Patgiri, Phenomenology of neutrino mass matrices obeying μ-τ reflection symmetry, arXiv:0707.2713 [SPIRES].
  86. [86]
    T. Baba and M. Yasue, Leptonic CP-violation Induced by Approximately mu-tau Symmetric Seesaw Mechanism, Phys. Rev. D 77 (2008) 075008 [arXiv:0710.2713] [SPIRES].ADSGoogle Scholar
  87. [87]
    J.C. Gomez-Izquierdo and A. Perez-Lorenzana, Softly broken μ ↔ τ symmetry in the minimal see-saw model, Phys. Rev. D 77 (2008) 113015 [arXiv:0711.0045] [SPIRES].ADSGoogle Scholar
  88. [88]
    F. Deppisch, H. Päs, A. Redelbach and R. Rückl, Constraints on SUSY seesaw parameters from leptogenesis and lepton flavor violation, Phys. Rev. D 73 (2006) 033004 [hep-ph/0511062] [SPIRES].ADSGoogle Scholar
  89. [89]
    J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [SPIRES].CrossRefADSGoogle Scholar
  90. [90]
    J.R. Ellis and M. Raidal, Leptogenesis and the violation of lepton number and CP at low energies, Nucl. Phys. B 643 (2002) 229 [hep-ph/0206174] [SPIRES].CrossRefADSGoogle Scholar
  91. [91]
    A. Redelbach, SUSY Seesaw model and phenomenological implications for leptonic processes at low energies and leptogenesis, dissertation, University of Würzburg, Würzburg Germany (2004), available online: http://www.opus-bayern.de/uni-wuerzburg/volltexte/2004/1018/.
  92. [92]
    A. Masiero, S.K. Vempati and O. Vives, Massive Neutrinos and Flavour Violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [SPIRES].CrossRefADSGoogle Scholar
  93. [93]
    S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of theta(13) on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [SPIRES].CrossRefADSGoogle Scholar
  94. [94]
    E. Molinaro, S. Petcov and F. Plentinger, in preparation.Google Scholar
  95. [95]
    F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [SPIRES].ADSGoogle Scholar
  96. [96]
    M. Hirsch, J.W.F. Valle, W. Porod, J.C. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [SPIRES].ADSGoogle Scholar
  97. [97]
    J.N. Esteves et al., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, JHEP 05 (2009) 003 [arXiv:0903.1408] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2011

Authors and Affiliations

  • Frank F. Deppisch
    • 1
  • Florian Plentinger
    • 2
  • Gerhart Seidl
    • 3
  1. 1.School of Physics and AstronomyUniversity of ManchesterManchesterUnited Kingdom
  2. 2.SISSA and INFN-Sezione di TriesteTriesteItaly
  3. 3.Institut für Theoretische Physik und AstrophysikUniversität WürzburgWürzburgGermany

Personalised recommendations