Advertisement

The momentum kernel of gauge and gravity theories

  • N. E. J. Bjerrum-Bohr
  • Poul H. Damgaard
  • Thomas Søndergaard
  • Pierre Vanhove
Open Access
Article

Abstract

We derive an explicit formula for factorizing an n-point closed string amplitude into open string amplitudes. Our results are phrased in terms of a momentum kernel which in the limit of infinite string tension reduces to the corresponding field theory kernel. The same momentum kernel encodes the monodromy relations which lead to the minimal basis of color-ordered amplitudes in Yang-Mills theory. There are interesting consequences of the momentum kernel pertaining to soft limits of amplitudes. We also comment on surprising links between gravity and certain combinations of kinematic and color factors in gauge theory.

Keywords

Supersymmetric gauge theory Superstrings and Heterotic Strings Models of Quantum Gravity 

References

  1. [1]
    H. Kawai, D.C. Lewellen and S.H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367] [SPIRES].ADSGoogle Scholar
  3. [3]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Proof of gravity and Yang-Mills amplitude relations, JHEP 09 (2010) 067 [arXiv:1007.3111] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    Z. Bern, L.J. Dixon, M. Perelstein and J.S. Rozowsky, Multi-leg one-loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    T. Sondergaard, New relations for gauge-theory amplitudes with matter, Nucl. Phys. B 821 (2009) 417 [arXiv:0903.5453] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    Y. Jia, R. Huang and C.-Y. Liu, U(1)-decoupling, KK and BCJ relations in \( \mathcal{N} = 4 \) SYM, Phys. Rev. D 82 (2010) 065001 [arXiv:1005.1821] [SPIRES].ADSGoogle Scholar
  8. [8]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [SPIRES].
  10. [10]
    E. Plahte, Symmetry properties of dual tree-graph N-point amplitudes, Nuovo Cim. A 66 (1970) 713 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, arXiv:1004.3417 [SPIRES].
  12. [12]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    C.R. Mafra, Simplifying the tree-level superstring massless five-point amplitude, JHEP 01 (2010) 007 [arXiv:0909.5206] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    S.H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [arXiv:1003.1732] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like relations for color-ordered amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    C. Cheung, D. O’Connell and B. Wecht, BCFW recursion relations and string theory, JHEP 09 (2010) 052 [arXiv:1002.4674] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  17. [17]
    R.H. Boels, D. Marmiroli and N.A. Obers, On-shell recursion in string theory, JHEP 10 (2010) 034 [arXiv:1002.5029] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    Z. Bern, T. Dennen, Y.-T. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [SPIRES].ADSGoogle Scholar
  19. [19]
    D. Vaman and Y.-P. Yao, Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes, JHEP 11 (2010) 028 [arXiv:1007.3475] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    P. Vanhove, The critical ultraviolet behaviour of \( \mathcal{N} = 8 \) supergravity amplitudes, arXiv:1004.1392 [SPIRES].
  22. [22]
    N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, New identities among gauge theory amplitudes, Phys. Lett. B 691 (2010) 268 [arXiv:1006.3214] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    S.H. Tye and Y. Zhang, Comment on the identities of the gluon tree amplitudes, arXiv:1007.0597 [SPIRES].
  24. [24]
    B. Feng and S. He, KLT and new relations for \( \mathcal{N} = 8 \) SUGRA and \( \mathcal{N} = 4 \) SYM, JHEP 09 (2010) 043 [arXiv:1007.0055] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  25. [25]
    B. Feng, S. He, R. Huang and Y. Jia, Note on new KLT relations, JHEP 10 (2010) 109 [arXiv:1008.1626] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E 7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [SPIRES].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    V.S. Dotsenko and V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240 (1984) 312 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    V.S. Dotsenko and V.A. Fateev, Four point correlation functions and the operator algebra in the two-dimensional conformal invariant theories with the central charge C < 1, Nucl. Phys. B 251 (1985) 691 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    F.A. Berends and W.T. Giele, Multiple soft gluon radiation in parton processes, Nucl. Phys. B 313 (1989) 595 [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    M. Kiermaier, Gravity as the square of gauge theory, talk given at Amplitudes 2010, Queen Mary University, London U.K. May 4–7 2010.Google Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • N. E. J. Bjerrum-Bohr
    • 1
  • Poul H. Damgaard
    • 1
  • Thomas Søndergaard
    • 1
  • Pierre Vanhove
    • 2
  1. 1.Niels Bohr International Academy and Discovery CenterThe Niels Bohr InstituteCopenhagen ØDenmark
  2. 2.CEA, DSM, Institut de Physique Théorique, IPhT, CNRS, MPPUGif-sur-YvetteFrance

Personalised recommendations