Advertisement

Journal of High Energy Physics

, 2010:129 | Cite as

On the absence of reflection in AdS 4/CFT 3

  • Changrim Ahn
  • Patrick Dorey
  • Rafael I. Nepomechie
Article

Abstract

A noteworthy feature of the S-matrix which has been proposed for AdS 4/CFT 3 is that the scattering of an A-particle (“soliton”) with a B-particle (“antisoliton”) is reflectionless. We argue, following Zamolodchikov, that the absence of reflection is a result of the existence of certain local conserved charges which act differently on the two types of particles.

Keywords

AdS-CFT Correspondence Exact S-Matrix Integrable Field Theories Bethe Ansatz 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, \( \mathcal{N} = 6 \) superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    G. Arutyunov and S. Frolov, Superstrings on AdS 4 × CP 3 as a Coset σ-model, JHEP 09 (2008) 129 [arXiv:0806.4940] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    B. Stefanski Jr., Green-Schwarz action for Type IIA strings on AdS 4 × CP 3, Nucl. Phys. B 808 (2009) 80 [arXiv:0806.4948] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    N. Gromov and P. Vieira, The AdS4/CFT3 algebraic curve, JHEP 02 (2009) 040 [arXiv:0807.0437] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    J. Gomis, D. Sorokin and L. Wulff, The complete AdS 4 × CP(3) superspace for the type IIA superstring and D-branes, JHEP 03 (2009) 015 [arXiv:0811.1566] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    D. Astolfi, V.G.M. Puletti, G. Grignani, T. Harmark and M. Orselli, Finite-size corrections in the SU(2) × SU(2) sector of type IIA string theory on AdS 4 × CP 3, Nucl. Phys. B 810 (2009) 150 [arXiv:0807.1527] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    P. Sundin, The AdS 4 × CP(3) string and its Bethe equations in the near plane wave limit, JHEP 02 (2009) 046 [arXiv:0811.2775] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    P. Sundin, On the worldsheet theory of the type IIA AdS 4 × CP(3) superstring, arXiv:0909.0697 [SPIRES].
  9. [9]
    K. Zarembo, Worldsheet spectrum in AdS 4/CFT 3 correspondence, JHEP 04 (2009) 135 [arXiv:0903.1747] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    C. Kalousios, C. Vergu and A. Volovich, Factorized Tree-level Scattering in AdS 4 × CP 3, JHEP 09 (2009) 049 [arXiv:0905.4702] [SPIRES].CrossRefGoogle Scholar
  11. [11]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP 09 (2008) 040 [arXiv:0806.3951] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    D. Bak and S.-J. Rey, Integrable Spin Chain in Superconformal Chern-Simons Theory, JHEP 10 (2008) 053 [arXiv:0807.2063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    C. Kristjansen, M. Orselli and K. Zoubos, Non-planar ABJM Theory and Integrability, JHEP 03 (2009) 037 [arXiv:0811.2150] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    B.I. Zwiebel, Two-loop Integrability of Planar \( \mathcal{N} = 6 \) Superconformal Chern-Simons Theory, J. Phys. A 42 (2009) 495402 [arXiv:0901.0411] [SPIRES].Google Scholar
  15. [15]
    J.A. Minahan, W. Schulgin and K. Zarembo, Two loop integrability for Chern-Simons theories with \( \mathcal{N} = 6 \) supersymmetry, JHEP 03 (2009) 057 [arXiv:0901.1142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    D. Bak, H. Min and S.-J. Rey, Generalized Dynamical Spin Chain and 4-Loop Integrability in \( \mathcal{N} = 6 \) Superconformal Chern-Simons Theory, Nucl. Phys. B 827 (2010) 381 [arXiv:0904.4677] [SPIRES].CrossRefGoogle Scholar
  17. [17]
    J.A. Minahan, O. Ohlsson Sax and C. Sieg, Magnon dispersion to four loops in the ABJM and ABJ models, arXiv:0908.2463 [SPIRES].
  18. [18]
    T. Nishioka and T. Takayanagi, On Type IIA Penrose Limit and \( \mathcal{N} = 6 \) Chern-Simons Theories, JHEP 08 (2008) 001 [arXiv:0806.3391] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    D. Gaiotto, S. Giombi and X. Yin, Spin Chains in \( \mathcal{N} = 6 \) Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066 [arXiv:0806.4589] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    G. Grignani, T. Harmark and M. Orselli, The SU(2) × SU(2) sector in the string dual of \( \mathcal{N} = 6 \) superconformal Chern-Simons theory, Nucl. Phys. B 810 (2009) 115 [arXiv:0806.4959] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    C. Ahn and R.I. Nepomechie, \( \mathcal{N} = 6 \) super Chern-Simons theory S-matrix and all-loop Bethe ansatz equations, JHEP 09 (2008) 010 [arXiv:0807.1924] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    N. Beisert, The su(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [SPIRES].MathSciNetGoogle Scholar
  24. [24]
    N. Beisert, The Analytic Bethe Ansatz for a Chain with Centrally Extended su(2|2) Symmetry, J. Stat. Mech. 0701 P017 (2007) [nlin/0610017].
  25. [25]
    R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossin symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    G. Arutyunov and S. Frolov, On AdS 5 × S 5 string S-matrix, Phys. Lett. B 639 (2006) 378 [hep-th/0604043] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    N. Beisert, R. Hernandez and E. Lopez, A crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    N. Beisert, B. Eden and M. Staudacher, Transcendentality and crossing, J. Stat. Mech. (2007) P01021 [hep-th/0610251] [SPIRES].
  29. [29]
    G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016 [arXiv:0807.0777] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    C. Ahn and R.I. Nepomechie, Two-loop test of the \( \mathcal{N} = 6 \) Chern-Simons theory S-matrix, JHEP 03 (2009) 144 [arXiv:0901.3334] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    R. Koberle and J.A. Swieca, Factorizable Z(N) Models, Phys. Lett. B 86 (1979) 209.ADSGoogle Scholar
  33. [33]
    A.B. Zamolodchikov, Integrals of Motion in Scaling Three State Potts Model Field Theory, Int. J. Mod. Phys. A 3 (1988) 743.CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    V.A. Fateev and A.B. Zamolodchikov, Conformal field theory and purely elastic S matrices, Int. J. Mod. Phys. A 5 (1990) 1025.CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Affine Toda Field Theory and Exact S Matrices, Nucl. Phys. B 338 (1990) 689.CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    T. Bargheer, N. Beisert and F. Loebbert, Long-Range Deformations for Integrable Spin Chains, J. Phys. A 42 (2009) 285205 [arXiv:0902.0956] [SPIRES].MathSciNetGoogle Scholar
  37. [37]
    V.A. Kazakov, A. Marshakov, J.A. Minahan and K. Zarembo, Classical / quantum integrability in AdS/CFT, JHEP 05 (2004) 024 [hep-th/0402207] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    V.A. Kazakov and K. Zarembo, Classical/quantum integrability in non-compact sector of AdS/CFT, JHEP 10 (2004) 060 [hep-th/0410105] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    N. Beisert, V.A. Kazakov and K. Sakai, Algebraic curve for the SO(6) sector of AdS/CFT, Commun. Math. Phys. 263 (2006) 611 [hep-th/0410253] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  40. [40]
    S. Schäfer-Nameki, The algebraic curve of 1-loop planar \( \mathcal{N} = 6 \) SYM, Nucl. Phys. B 714 (2005) 3 [hep-th/0412254] [SPIRES].CrossRefADSGoogle Scholar
  41. [41]
    N. Beisert, V.A. Kazakov, K. Sakai and K. Zarembo, The algebraic curve of classical superstrings on AdS 5 × S 5, Commun. Math. Phys. 263 (2006) 659 [hep-th/0502226] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  42. [42]
    B. Vicedo, Finite-g Strings, Ph.D. Thesis, University of Cambridge, Cambridge U.K. (2008) arXiv:0810.3402 [SPIRES].
  43. [43]
    M.C. Abbott, I. Aniceto and O.O. Sax, Dyonic Giant Magnons in CP 3 : Strings and Curves at Finite J, Phys. Rev. D 80 (2009) 026005 arXiv:0903.3365 [SPIRES].ADSGoogle Scholar
  44. [44]
    T.J. Hollowood and J.L. Miramontes, A New and Elementary CP n Dyonic Magnon, JHEP 08 (2009) 109 [arXiv:0905.2534] [SPIRES].CrossRefGoogle Scholar
  45. [45]
    I. Shenderovich, Giant magnons in AdS 4/CFT 3 : dispersion, quantization and finite-size corrections, arXiv:0807.2861 [SPIRES].
  46. [46]
    T. Lukowski and O.O. Sax, Finite size giant magnons in the SU(2) × SU(2) sector of AdS 4 × CP 3, JHEP 12 (2008) 073 [arXiv:0810.1246] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  47. [47]
    J.A. Minahan, A. Tirziu and A.A. Tseytlin, Infinite spin limit of semiclassical string states, JHEP 08 (2006) 049 [hep-th/0606145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Factorized S matrices in two-dimensions as the exact solutions of certain relativistic quantum field models, Ann. Phys. 120 (1979) 253.CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    Al.B. Zamolodchikov, The sine-Gordon model on and off the mass shell, lectures at the Eötvos Graduate School, Budapest Hungary (1996).Google Scholar
  50. [50]
    P. Dorey, Exact S matrices, in Conformal field theories and integrable models, Z. Horváth and L. Palla eds., Springer-Verlag, Heidelberg Germany (1997) hep-th/9810026 [SPIRES].Google Scholar
  51. [51]
    Y. Hatsuda and H. Tanaka, Scattering of Giant Magnons in CP 3, arXiv:0910.5315 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Changrim Ahn
    • 1
  • Patrick Dorey
    • 2
  • Rafael I. Nepomechie
    • 3
  1. 1.Department of PhysicsEwha Womans UniversitySeoulSouth Korea
  2. 2.Department of Mathematical SciencesDurham UniversityDurhamU.K.
  3. 3.Physics Department, P.O. Box 248046University of MiamiCoral GablesU.S.A.

Personalised recommendations