Advertisement

Journal of High Energy Physics

, 2010:117 | Cite as

Towards a manifestly supersymmetric action for 11-dimensional supergravity

  • Martin Cederwall
Article

Abstract

We investigate the possibility of writing a manifestly supersymmetric action for 11-dimensional supergravity. The construction involves an explicit relation between the fields in the super-vielbein and the super-3-form, and uses non-minimal pure spinors. A simple cubic interaction term for a single scalar superfield is found.

Keywords

Extended Supersymmetry Superspaces Classical Theories of Gravity Supergravity Models 

References

  1. [1]
    E. Cremmer, B. Julia and J. Scherk, Supergravity theory in 11 dimensions, Phys. Lett. B 76 (1978) 409 [SPIRES].ADSGoogle Scholar
  2. [2]
    L. Brink and P.S. Howe, Eleven-Dimensional Supergravity on the Mass-Shell in Superspace, Phys. Lett. B 91 (1980) 384 [SPIRES].ADSGoogle Scholar
  3. [3]
    E. Cremmer and S. Ferrara, Formulation of Eleven-Dimensional Supergravity in Superspace, Phys. Lett. B 91 (1980) 61 [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    B.E.W. Nilsson, Pure Spinors As Auxiliary Fields In The Ten-Dimensional Supersymmetric Yang-Mills Theory, Class. Quant. Grav. 3 (1986) L41 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    N. Berkovits, Super-Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    N. Berkovits, Covariant quantization of the superparticle using pure spinors, JHEP 09 (2001) 016 [hep-th/0105050] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    M. Cederwall, U. Gran, M. Nielsen and B.E.W. Nilsson, Manifestly supersymmetric M-theory, JHEP 10 (2000) 041 [hep-th/0007035] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    M. Cederwall, U. Gran, M. Nielsen and B.E.W. Nilsson, Generalised 11-dimensional supergravity, hep-th/0010042 [SPIRES].
  11. [11]
    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, The structure of maximally supersymmetric Yang-Mills theory: constraining higher-order corrections, JHEP 06 (2001) 034 [hep-th/0102009] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, D = 10 super-Yang-Mills at O(alpha′2), JHEP 07 (2001) 042 [hep-th/0104236] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology and maximally supersymmetric theories, JHEP 02 (2002) 009 [hep-th/0110069] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    M. Cederwall, Superspace methods in string theory, supergravity and gauge theory, lectures at the XXXVII Winter School in Theoretical Physics “New Developments in Fundamental Interactions Theories”, Karpacz, Poland, Feb. 6-15, 2001 hep-th/0105176 [SPIRES].
  15. [15]
    M. Movshev and A.S. Schwarz, On maximally supersymmetric Yang-Mills theories, Nucl. Phys. B 681 (2004) 324 [hep-th/0311132] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    M. Cederwall, U. Gran, B.E.W. Nilsson and D. Tsimpis, Supersymmetric corrections to eleven-dimensional supergravity, JHEP 05 (2005) 052 [hep-th/0409107] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    N. Berkovits, Pure spinor formalism as an N = 2 topological string, JHEP 10 (2005) 089 [hep-th/0509120] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    M. Cederwall and B.E.W. Nilsson, Pure Spinors and D = 6 super-Yang-Mills, arXiv:0801.1428 [SPIRES].
  19. [19]
    M. Cederwall, N=8 superfield formulation of the Bagger-Lambert- Gustavsson model, JHEP 09 (2008) 116 [arXiv:0808.3242] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    M. Cederwall, Superfield actions for N=8 and N=6 conformal theories in three dimensions, JHEP 10 (2008) 070 [arXiv:0809.0318] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    I.A. Batalin and G.A. Vilkovisky, Gauge Algebra and Quantization, Phys. Lett. B 102 (1981) 27 [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    A. Fuster, M. Henneaux and A. Maas, BRST quantization: A short review, Int. J. Geom. Meth. Mod. Phys. 2 (2005) 939 [hep-th/0506098] [SPIRES].MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. Bagger and N. Lambert, Modeling multiple M2’s, Phys. Rev. D 75 (2007) 045020 [hep-th/0611108] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    J. Bagger and N. Lambert, Gauge Symmetry and Supersymmetry of Multiple M2-Branes, Phys. Rev. D 77 (2008) 065008 [arXiv:0711.0955] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    M. Cederwall, D=11 supergravity with manifest supersymmetry work in progress, arXiv:1001.0112.
  28. [28]
    B. Zwiebach, Closed string field theory: Quantum action and the B-V master equation, Nucl. Phys. B 390 (1993) 33 [hep-th/9206084] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    N. Berkovits, Covariant quantization of the supermembrane, JHEP 09 (2002) 051 [hep-th/0201151] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    L. Anguelova, P.A. Grassi and P. Vanhove, Covariant one-loop amplitudes in D = 11, Nucl. Phys. B 702 (2004) 269 [hep-th/0408171] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    P.A. Grassi and P. Vanhove, Topological M-theory from pure spinor formalism, Adv. Theor. Math. Phys. 9 (2005) 285 [hep-th/0411167] [SPIRES].MATHMathSciNetGoogle Scholar
  32. [32]
    N. Berkovits, ICTP lectures on covariant quantization of the superstring, in proceedings of The ICTP Spring School on Superstrings and Related Matters, Trieste, Italy, 2002 [hep-th/0209059] [SPIRES].Google Scholar
  33. [33]
    N. Berkovits and N. Nekrasov, The character of pure spinors, Lett. Math. Phys. 74 (2005) 75 [hep-th/0503075] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  34. [34]
    N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    R. Marnelius and M. Ögren, Symmetric inner products for physical states in BRST quantization, Nucl. Phys. B 351 (1991) 474 [SPIRES.CrossRefADSGoogle Scholar
  36. [36]
    P.S. Howe, Weyl superspace, Phys. Lett. B 415 (1997) 149 [hep-th/9707184] [SPIRES]MathSciNetADSGoogle Scholar
  37. [37]
    N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multigraviton theories, Nucl. Phys. B 597 (2001) 127 [hep-th/0007220] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    U. Gran, GAMMA: A Mathematica package for performing Gamma-matrix algebra and Fierz transformations in arbitrary dimensions, hep-th/0105086 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Fundamental PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations