Journal of High Energy Physics

, 2010:100 | Cite as

A covariant form of the Navier-Stokes equation for the infinite dimensional Galilean conformal algebra

  • Ayan Mukhopadhyay


We demonstrate that the Navier-Stokes equation can be covariantized under the full infinite dimensional Galilean Conformal Algebra (GCA), such that it reduces to the usual Navier-Stokes equation in an inertial frame. The covariantization is possible only for incompressible flows, i.e when the divergence of the velocity field vanishes. Using the continuity equation, we can fix the transformation of pressure and density under GCA uniquely. We also find that when all chemical potentials vanish, c s , which denotes the speed of sound in an inertial frame comoving with the flow, must either be a fundamental constant or given in terms of microscopic parameters. We will discuss how both could be possible. In absence of chemical potentials, we also find that the covariance under GCA implies that either the viscosity should vanish or the microscopic theory should have a length scale or a time scale or both. We also find that the higher derivative corrections to the Naver-Stokes equation, can be covariantized, only if they are restricted to certain possible combinations in the inertial frame. We explicitly evaluate all possible three derivative corrections. Finally, we argue that our analysis hints that the parent relativistic theory with relativistic conformal symmetry needs to be deformed before the contraction is taken to produce a sensible GCA invariant dynamical limit.


Space-Time Symmetries AdS-CFT Correspondence 


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [SPIRES].MATHMathSciNetADSGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Exotic Galilean conformal symmetry and its dynamical realisations, Phys. Lett. A 357 (2006) 1 [hep-th/0511259] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    M. Alishahiha, A. Davody and A. Vahedi, On AdS/CFT of Galilean conformal field theories, JHEP 08 (2009) 022 [arXiv:0903.3953] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    A. Bagchi and I. Mandal, On representations and correlation functions of Galilean conformal algebras, Phys. Lett. B 675 (2009) 393 [arXiv:0903.4524] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    C. Leiva and M.S. Plyushchay, Conformal symmetry of relativistic and nonrelativistic systems and AdS/CFT correspondence, Ann. Phys. 307 (2003) 372 [hep-th/0301244] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  8. [8]
    M. Rangamani, Gravity & Hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].CrossRefMathSciNetGoogle Scholar
  9. [9]
    C. Duval and P.A. Horvathy, Non-relativistic conformal symmetries and Newton-Cartan structures, J. Phys. A 42 (2009) 465206 [arXiv:0904.0531] [SPIRES].Google Scholar
  10. [10]
    D. Martelli and Y. Tachikawa, Comments on Galilean conformal field theories and their geometric realization, arXiv:0903.5184 [SPIRES].
  11. [11]
    A. Bagchi and R. Gopakumar, Galilean conformal algebras and AdS/CFT, JHEP 07 (2009) 037 [arXiv:0902.1385] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    J. Lukierski, P.C. Stichel and W.J. Zakrzewski, Galilean-invariant (2 + 1)-dimensional models with a Chern-Simons-like term and D = 2 noncommutative geometry, Annals Phys. 260 (1997) 224 [hep-th/9612017] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  13. [13]
    P.A. Horvathy and M.S. Plyushchay, Non-relativistic anyons and exotic Galilean symmetry, JHEP 06 (2002) 033 [hep-th/0201228] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    P.A. Horvathy and M.S. Plyushchay, Anyon wave equations and the noncommutative plane, Phys. Lett. B 595 (2004) 547 [hep-th/0404137] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    M.S. Plyushchay, Relativistic particle with torsion, Majorana equation and fractional spin, Phys. Lett. B 262 (1991) 71 [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    M.S. Plyushchay, The model of relativistic particle with torsion, Nucl. Phys. B 362 (1991) 54 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  17. [17]
    D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the Schroedinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    K. Balasubramanian and J. McGreevy, Gravity duals for non-relativistic CFTs, Phys. Rev. Lett. 101 (2008) 061601 [arXiv:0804.4053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    C.P. Herzog, M. Rangamani and S.F. Ross, Heating up Galilean holography, JHEP 11 (2008) 080 [arXiv:0807.1099] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    J. Maldacena, D. Martelli and Y. Tachikawa, Comments on string theory backgrounds with non- relativistic conformal symmetry, JHEP 10 (2008) 072 [arXiv:0807.1100] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    A. Adams, K. Balasubramanian and J. McGreevy, Hot spacetimes for cold atoms, JHEP 11 (2008) 059 [arXiv:0807.1111] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    A. Volovich and C. Wen, Correlation functions in non-relativistic holography, JHEP 05 (2009) 087 [arXiv:0903.2455] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    M. Taylor, Non-relativistic holography, arXiv:0812.0530 [SPIRES].
  24. [24]
    R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    R. Loganayagam, Entropy current in conformal hydrodynamics, JHEP 05 (2008) 087 [arXiv:0801.3701] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    H.P. Kunzle, Covariant newtonian limit of Lorentz space-times, Gen. Rel. Grav. 7 (1976) 445.MathSciNetADSGoogle Scholar
  29. [29]
    Landau and Lifshitz, Fluid mechanics, Chapter 2, Pergamon Press, Oxford U.K. (1959).Google Scholar
  30. [30]
    T. Schafer and D. Teaney, Nearly perfect fluidity: from cold atomic gases to hot quark gluon plasmas, Rept. Prog. Phys. 72 (2009) 126001 [arXiv:0904.3107] [SPIRES].CrossRefGoogle Scholar
  31. [31]
    M. Rangamani, S.F. Ross, D.T. Son and E.G. Thompson, Conformal non-relativistic hydrodynamics from gravity, JHEP 01 (2009) 075 [arXiv:0811.2049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    C. Eling, I. Fouxon and Y. Oz, The incompressible Navier-Stokes equations from membrane dynamics, Phys. Lett. B 680 (2009) 496 [arXiv:0905.3638] [SPIRES].Google Scholar
  33. [33]
    S. Bhattacharyya, S. Minwalla and S.R. Wadia, The incompressible non-relativistic Navier-Stokes equation from gravity, JHEP 08 (2009) 059 [arXiv:0810.1545] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    I. Fouxon and Y. Oz, CFT hydrodynamics: symmetries, exact solutions and gravity, JHEP 03 (2009) 120 [arXiv:0812.1266] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    P.A. Horvathy and P.M. Zhang, Non-relativistic conformal symmetries in fluid mechanics, arXiv:0906.3594 [SPIRES].
  36. [36]
    M. Hassaine and P.A. Horvathy, Field-dependent symmetries of a non-relativistic fluid model, Ann. Phys. 282 (2000) 218 [math-ph/9904022] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  37. [37]
    M. Hassaine and P.A. Horvathy, Symmetries of fluid dynamics with polytropic exponent, Phys. Lett. A 279 (2001) 215 [hep-th/0009092] [SPIRES].MathSciNetADSGoogle Scholar
  38. [38]
    F. Correa, V. Jakubsky and M.S. Plyushchay, Aharonov-Bohm effect on AdS 2 and nonlinear supersymmetry of reflectionless Poschl-Teller system, Annals Phys. 324 (2009) 1078 [arXiv:0809.2854] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  39. [39]
    P.D. Alvarez, J.L. Cortes, P.A. Horvathy and M.S. Plyushchay, Super-extended noncommutative Landau problem and conformal symmetry, JHEP 03 (2009) 034 [arXiv:0901.1021] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    M. Sakaguchi, Super galilean conformal algebra in AdS/CFT, arXiv:0905.0188 [SPIRES].
  41. [41]
    A. Bagchi and I. Mandal, Supersymmetric extension of galilean conformal algebras, Phys. Rev. D 80 (2009) 086011 [arXiv:0905.0580] [SPIRES].Google Scholar
  42. [42]
    J.A. de Azcarraga, J. lukierski, Galilean superconformal symmetries, Phys. Lett. B 678 (2009) 411 [arXiv:0905.0141] [SPIRES].ADSGoogle Scholar
  43. [43]
    N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].MathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Harish-Chandra Research InstituteAllahabadIndia

Personalised recommendations