Advertisement

On the classification of brane tilings

  • John Davey
  • Amihay Hanany
  • Jurgis Pasukonis
Article

Abstract

We present a computationally efficient algorithm that can be used to generate all possible brane tilings. Brane tilings represent the largest class of superconformal theories with known AdS duals in 3+1 and also 2+1 dimensions and have proved useful for describing the physics of both D3 branes and also M2 branes probing Calabi-Yau singularities. This algorithm has been implemented and is used to generate all possible brane tilings with at most 6 superpotential terms, including consistent and inconsistent brane tilings. The collection of inconsistent tilings found in this work forms the most comprehensive study of such objects to date.

Keywords

Supersymmetric gauge theory Conformal Field Models in String Theory Supersymmetry and Duality 

References

  1. [1]
    A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [SPIRES].
  2. [2]
    S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane Dimers and Quiver Gauge Theories, JHEP 01 (2006) 096 [hep-th/0504110] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    K.D. Kennaway, Brane Tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    M. Yamazaki, Brane Tilings and Their Applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [SPIRES].MATHCrossRefGoogle Scholar
  5. [5]
    A. Kehagias, New type IIB vacua and their F-theory interpretation, Phys. Lett. B 435 (1998) 337 [hep-th/9805131] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    B.S. Acharya, J.M. Figueroa-O'Farrill, C.M. Hull and B.J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999) 1249 [hep-th/9808014] [SPIRES].MathSciNetGoogle Scholar
  8. [8]
    D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [SPIRES].MATHMathSciNetGoogle Scholar
  9. [9]
    K. Ueda and M. Yamazaki, Toric Calabi-Yau four-folds dual to Chern-Simons-matter theories, JHEP 12 (2008) 045 [arXiv:0808.3768] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons Theories and M2 Branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane Tilings and M2 Branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  12. [12]
    A. Hanany and Y.-H. He, Chern-Simons: Fano and Calabi-Yau, arXiv:0904.1847 [SPIRES].
  13. [13]
    A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M2-brane Theories for Generic Toric Singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Hanany and Y.-H. He, M2-Branes and Quiver Chern-Simons: A Taxonomic Study, arXiv:0811.4044 [SPIRES].
  16. [16]
    J. Hewlett and Y.-H. He, Probing the Space of Toric Quiver Theories, arXiv:0909.2879 [SPIRES].
  17. [17]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Hanany, P. Kazakopoulos and B. Wecht, A new infinite class of quiver gauge theories, JHEP 08 (2005) 054 [hep-th/0503177] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    T. Oota and Y. Yasui, New example of infinite family of quiver gauge theories, Nucl. Phys. B 762 (2007) 377 [hep-th/0610092] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    M. Cvetič, H. Lü, D.N. Page and C.N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95 (2005) 071101 [hep-th/0504225] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    B. Feng, Y.-H. He and F. Lam, On correspondences between toric singularities and (p,q)- webs, Nucl. Phys. B 701 (2004) 334 [hep-th/0403133] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    K.A. Intriligator and B. Wecht, The exact superconformal R-symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    D. Kutasov, New results on the 'a-theorem' in four dimensional supersymmetric field theory, hep-th/0312098 [SPIRES].
  25. [25]
    P.S. Aspinwall and I.V. Melnikov, D-branes on vanishing del Pezzo surfaces, JHEP 12 (2004) 042 [hep-th/0405134] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    B. Feng, A. Hanany, Y.H. He and A. Iqbal, Quiver theories, soliton spectra and Picard-Lefschetz transformations, JHEP 02 (2003) 056 [hep-th/0206152] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    C.P. Herzog, Seiberg duality is an exceptional mutation, JHEP 08 (2004) 064 [hep-th/0405118] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    D.R. Gulotta, Properly ordered dimers, R-charges and an efficient inverse algorithm, JHEP 10 (2008) 014 [arXiv:0807.3012] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane Theories, JHEP 06 (2009) 025 [arXiv:0903.3234] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Theoretical Physics Group, The Blackett LaboratoryImperial College LondonLondonU.K.

Personalised recommendations