AdS/QCD: the relevance of the geometry

  • Diego Becciolini
  • Michele Redi
  • Andrea Wulzer


We investigate the relevance of the metric and of the geometry in five-dimensional models of hadrons. Generically, the metric does not affect strongly the results and even flat space agrees reasonably well with the data. Nevertheless, we observe a preference for a decreasing warp factor, for example AdS space. The Sakai-Sugimoto model reduces to one of these models and the level of agreement is similar to the one of flat space. We also consider the discrete version of the five-dimensional models, obtained by dimensional deconstruction. We find that essentially all the relevant features of “holographic” models of QCD can be reproduced with a simple 3-site model describing only the states below the cut-off of the theory.


AdS-CFT Correspondence QCD Confinement 1/N Expansion 


  1. [1]
    M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    M. Harada and K. Yamawaki, Hidden local symmetry at loop: a new perspective of composite gauge boson and chiral phase transition, Phys. Rept. 381 (2003) 1 [hep-ph/0302103] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    H. Georgi, Vector realization of chiral symmetry, Nucl. Phys. B 331 (1990) 311 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    G. 't Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    E. Witten, Baryons in the 1/n expansion, Nucl. Phys. B 160 (1979) 57 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    D.T. Son and M.A. Stephanov, QCD and dimensional deconstruction, Phys. Rev. D 69 (2004) 065020 [hep-ph/0304182] [SPIRES].ADSGoogle Scholar
  7. [7]
    J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [SPIRES].ADSGoogle Scholar
  9. [9]
    L. Da Rold and A. Pomarol, The scalar and pseudoscalar sector in a five-dimensional approach to chiral symmetry breaking, JHEP 01 (2006) 157 [hep-ph/0510268] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [SPIRES.
  11. [11]
    H. Boschi-Filho and N.R.F. Braga, QCD/String holographic mapping and glueball mass spectrum, Eur. Phys. J. C 32 (2004) 529 [hep-th/0209080] [SPIRES].ADSGoogle Scholar
  12. [12]
    H. Boschi-Filho and N.R.F. Braga, Gauge/string duality and scalar glueball mass ratios, JHEP 05 (2003) 009 [hep-th/0212207] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    J. Hirn and V. Sanz, Interpolating between low and high energy QCD via a 5D Yang-Mills model, JHEP 12 (2005) 030 [hep-ph/0507049] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    A. Pomarol and A. Wulzer, Stable skyrmions from extra dimensions, JHEP 03 (2008) 051 [arXiv:0712.3276] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    A. Pomarol and A. Wulzer, Baryon physics in holographic QCD, Nucl. Phys. B 809 (2009) 347 [arXiv:0807.0316] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    G. Panico and A. Wulzer, Nucleon form factors from 5D skyrmions, Nucl. Phys. A 825 (2009) 91 [arXiv:0811.2211] [SPIRES].ADSGoogle Scholar
  17. [17]
    H.R. Grigoryan and A.V. Radyushkin, Pion in the holographic model with 5D Yang-Mills fields, Phys. Rev. D 78 (2008) 115008 [arXiv:0808.1243] [SPIRES].ADSGoogle Scholar
  18. [18]
    A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [SPIRES].ADSGoogle Scholar
  19. [19]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    S.J. Brodsky and G.F. de Teramond, AdS/CFT and light-front QCD, arXiv:0802.0514 [SPIRES].
  21. [21]
    G.F. de Teramond and S.J. Brodsky, Light-front holography: a first approximation to QCD, Phys. Rev. Lett. 102 (2009) 081601 [arXiv:0809.4899] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    S.J. Brodsky and G.F. de Teramond, Light-front holography and novel effects in QCD, AIP Conf. Proc. 1116 (2009) 311 [arXiv:0812.3192] [SPIRES].ADSGoogle Scholar
  23. [23]
    T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].CrossRefMATHADSGoogle Scholar
  24. [24]
    T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [SPIRES].CrossRefMATHADSGoogle Scholar
  25. [25]
    N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    W. Skiba and D. Tucker-Smith, Localized fermions and anomaly inflow via deconstruction, Phys. Rev. D 65 (2002) 095002 [hep-ph/0201056] [SPIRES].ADSGoogle Scholar
  27. [27]
    J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark, Nucl. Phys. B 250 (1985) 465 [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05 (2007) 060 [hep-th/0703287] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    K. Kawarabayashi and M. Suzuki, Partially conserved axial vector current and the decays of vector mesons, Phys. Rev. Lett. 16 (1966) 255 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  30. [30]
    Riazuddin and Fayyazuddin, Algebra of current components and decay widths of ρ and K* mesons, Phys. Rev. 147 (1966) 1071 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    N. Isgur, C. Morningstar and C. Reader, The a 1 in τ decay, Phys. Rev. D 39 (1989) 1357 [SPIRES].ADSGoogle Scholar
  32. [32]
    M. Wingate, T.A. DeGrand, S. Collins and U.M. Heller, Properties of the a 1 meson from lattice QCD, Phys. Rev. Lett. 74 (1995) 4596 [hep-ph/9502274] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    E. Witten, Current algebra theorems for the U(1) Goldstone boson, Nucl. Phys. B 156 (1979) 269 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    O. Kaymakcalan, S. Rajeev and J. Schechter, Nonabelian anomaly and vector meson decays, Phys. Rev. D 30 (1984) 594 [SPIRES].ADSGoogle Scholar
  36. [36]
    C.-S. Chu, P.-M. Ho and B. Zumino, Non-abelian anomalies and effective actions for a homogeneous space G/H, Nucl. Phys. B 475 (1996) 484 [hep-th/9602093] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  37. [37]
    R. Kaiser and H. Leutwyler, Large-N c in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.ITPP, EPFLLausanneSwitzerland

Personalised recommendations