Advertisement

(Un)Higgsing the M2-brane

  • Nessi Benishti
  • Yang-Hui He
  • James Sparks
Article

Abstract

We study various aspects of \( \mathcal{N} = 2 \) quiver-Chern-Simons theories, conjectured to be dual to M2-branes at toric Calabi-Yau four-fold singularities, under Higgsing. In particular we study in detail the orbifold \( {{{\mathbb{C}^4}} \mathord{\left/{\vphantom {{{\mathbb{C}^4}} {\mathbb{Z}_2^3}}} \right.} {\mathbb{Z}_2^3}} \), obtaining a number of different quiver-Chern-Simons phases for this model, and all 18 toric partial resolutions thereof. In the process we develop a general un-Higgsing algorithm that allows one to construct quiver-Chern-Simons theories by blowing up, thus obtaining a plethora of new models. In addition we explain how turning on torsion G-flux non-trivially affects the supergravity dual of Higgsing, showing that the supergravity and field theory analyses precisely match in an example based on the Sasaki-Einstein manifold \( {Y^{1,2}}\left( {\mathbb{C}{\mathbb{P}^2}} \right) \).

Keywords

AdS-CFT Correspondence Chern-Simons Theories M-Theory 

References

  1. [1]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  2. [2]
    J. Bagger and N. Lambert, Comments on multiple M2-branes, JHEP 02 (2008) 105 [arXiv:0712.3738] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    A. Gustavsson, Algebraic structures on parallel M2-branes, Nucl. Phys. B 811 (2009) 66 [arXiv:0709.1260] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    M. Benna, I. Klebanov, T. Klose and M. Smedback, Superconformal Chern-Simons theories and AdS 4 /CFT 3 correspondence, JHEP 09 (2008) 072 [arXiv:0806.1519] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 superconformal Chern-Simons theories with hyper and twisted hyper multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 5, 6 superconformal Chern-Simons theories and M2-branes on orbifolds, JHEP 09 (2008) 002 [arXiv:0806.4977] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    M. Schnabl and Y. Tachikawa, Classiffication of N = 6 superconformal theories of ABJM type, arXiv:0807.1102 [SPIRES].
  8. [8]
    Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [SPIRES].MATHCrossRefADSGoogle Scholar
  9. [9]
    S. Terashima and F. Yagi, Orbifolding the membrane action, JHEP 12 (2008) 041 [arXiv:0807.0368] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    D.L. Jafferis and A. Tomasiello, A simple class of N = 3 gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS 4/CFT 3, Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    A. Hanany and A. Zaffaroni, Tilings, Chern-Simons theories and M2 branes, JHEP 10 (2008) 111 [arXiv:0808.1244] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    A. Hanany, D. Vegh and A. Zaffaroni, Brane tilings and M2 branes, JHEP 03 (2009) 012 [arXiv:0809.1440] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    Y. Imamura and K. Kimura, N = 4 Chern-Simons theories with auxiliary vector multiplets, JHEP 10 (2008) 040 [arXiv:0807.2144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    S. Franco, A. Hanany, J. Park and D. Rodriguez-Gomez, Towards M2-brane theories for generic toric singularities, JHEP 12 (2008) 110 [arXiv:0809.3237] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    A. Hanany and Y.-H. He, M2-branes and quiver Chern-Simons: a taxonomic study, arXiv:0811.4044 [SPIRES].
  17. [17]
    S. Franco, I.R. Klebanov and D. Rodriguez-Gomez, M2-branes on orbifolds of the cone over Q 1,1,1, JHEP 08 (2009) 033 [arXiv:0903.3231] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    J. Davey, A. Hanany, N. Mekareeya and G. Torri, Phases of M2-brane theories, JHEP 06 (2009) 025 [arXiv:0903.3234] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    H. Ooguri and C.-S. Park, Superconformal Chern-Simons theories and the squashed seven sphere, JHEP 11 (2008) 082 [arXiv:0808.0500] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    J. Davey, A. Hanany, N. Mekareeya and G. Torri, Higgsing M2-brane theories, JHEP 11 (2009) 028 [arXiv:0908.4033] [SPIRES].CrossRefGoogle Scholar
  21. [21]
    B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    C. Beasley, B.R. Greene, C.I. Lazaroiu and M.R. Plesser, D3-branes on partial resolutions of abelian quotient singularities of Calabi-Yau threefolds, Nucl. Phys. B 566 (2000) 599 [hep-th/9907186] [SPIRES].CrossRefMathSciNetGoogle Scholar
  24. [24]
    M.R. Douglas and G.W. Moore, D-branes, quivers and ALE instantons, hep-th/9603167 [SPIRES].
  25. [25]
    D. Berenstein and M. Romo, Aspects of ABJM orbifolds, arXiv:0909.2856 [SPIRES].
  26. [26]
    O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    D. Gaiotto and X. Yin, Notes on superconformal Chern-Simons-matter theories, JHEP 08 (2007) 056 [arXiv:0704.3740] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, AM-131, Princeton University Press, Princeton U.S.A. (1993) [ISBN-10:0691000492].MATHGoogle Scholar
  29. [29]
    D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, arXiv:0901.0969 [SPIRES].
  30. [30]
    D. Forcella, A. Hanany, Y.-H. He and A. Zaffaroni, The master space of N = 1 gauge theories, JHEP 08 (2008) 012 [arXiv:0801.1585] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    E. Lerman, Contact toric manifolds, math.SG/0107201.Google Scholar
  32. [32]
    A. Futaki, H. Ono and G. Wang, Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, math.DG/0607586 [SPIRES].
  33. [33]
    M.R. Douglas, B.R. Greene and D.R. Morrison, Orbifold resolution by D-branes, Nucl. Phys. B 506 (1997) 84 [hep-th/9704151] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    H. Fuji, S. Terashima and M. Yamazaki, A new N = 4 membrane action via orbifold, Nucl. Phys. B 810 (2009) 354 [arXiv:0805.1997] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    D.R. Morrison and M.R. Plesser, Non-spherical horizons. I, Adv. Theor. Math. Phys. 3 (1999) 1 [hep-th/9810201] [SPIRES].MATHMathSciNetGoogle Scholar
  36. [36]
    A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Symmetries of toric duality, JHEP 12 (2002) 076 [hep-th/0205144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    A.E. Lawrence, N. Nekrasov and C. Vafa, On conformal field theories in four dimensions, Nucl. Phys. B 533 (1998) 199 [hep-th/9803015] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    A. Hanany and Y.-H. He, Non-Abelian finite gauge theories, JHEP 02 (1999) 013 [hep-th/9811183] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    K.D. Kennaway, Brane tilings, Int. J. Mod. Phys. A 22 (2007) 2977 [arXiv:0706.1660] [SPIRES].MathSciNetADSGoogle Scholar
  42. [42]
    M. Yamazaki, Brane tilings and their applications, Fortsch. Phys. 56 (2008) 555 [arXiv:0803.4474] [SPIRES].MATHCrossRefGoogle Scholar
  43. [43]
    B. Feng, S. Franco, A. Hanany and Y.-H. He, Unhiggsing the del Pezzo, JHEP 08 (2003) 058 [hep-th/0209228] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  44. [44]
    D. Martelli and J. Sparks, Notes on toric Sasaki-Einstein seven-manifolds and AdS 4 /CFT 3, JHEP 11 (2008) 016 [arXiv:0808.0904] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    A. Amariti, D. Forcella, L. Girardello and A. Mariotti, 3D Seiberg-like dualities and M2 branes, arXiv:0903.3222 [SPIRES].
  46. [46]
    A. Hanany and Y.-H. He, Chern-Simons: Fano and Calabi-Yau, arXiv:0904.1847 [SPIRES].
  47. [47]
    K. Ueda and M. Yamazaki, Toric Calabi-Yau four-folds dual to Chern-Simons-matter theories, JHEP 12 (2008) 045 [arXiv:0808.3768] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    S. Lee, S. Lee and J. Park, Toric AdS 4/CFT 3 duals and M-theory crystals, JHEP 05 (2007) 004 [hep-th/0702120] [SPIRES].CrossRefADSGoogle Scholar
  49. [49]
    Y. Imamura and K. Kimura, Quiver Chern-Simons theories and crystals, JHEP 10 (2008) 114 [arXiv:0808.4155] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  50. [50]
    M. Aganagic, A stringy origin of M2 brane Chern-Simons theories, arXiv:0905.3415 [SPIRES].
  51. [51]
    E. Lerman, Homotopy groups of K-contact toric manifold, math.SG/0204064.
  52. [52]
    K. Becker and M. Becker, M-theory on eight-manifolds, Nucl. Phys. B 477 (1996) 155 [hep-th/9605053] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    I.R. Klebanov and A. Murugan, Gauge/gravity duality and warped resolved conifold, JHEP 03 (2007) 042 [hep-th/0701064] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    D. Martelli and J. Sparks, Baryonic branches and resolutions of Ricci-at Kähler cones, JHEP 04 (2008) 067 [arXiv:0709.2894] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    D. Martelli and J. Sparks, Symmetry-breaking vacua and baryon condensates in AdS/CFT, Phys. Rev. D 79 (2009) 065009 [arXiv:0804.3999] [SPIRES].MathSciNetADSGoogle Scholar
  57. [57]
    C. van Coevering, A construction of complete Ricci-at Kähler manifolds, arXiv:0803.0112 [SPIRES].
  58. [58]
    C. van Coevering, Ricci-at Kähler metrics on crepant resolutions of Kähler cones, arXiv:0806.3728 [SPIRES].
  59. [59]
    C. van Coevering, Examples of asymptotically conical Ricci-at Kähler manifolds, arXiv:0812.4745.
  60. [60]
    J.P. Gauntlett, D. Martelli, J.F. Sparks and D. Waldram, A new infinite class of Sasaki-Einstein manifolds, Adv. Theor. Math. Phys. 8 (2006) 987 [hep-th/0403038] [SPIRES].MathSciNetGoogle Scholar
  61. [61]
    D. Martelli and J. Sparks, Resolutions of non-regular Ricci-at Kähler cones, J. Geom. Phys. 59 (2009) 1175 [arXiv:0707.1674] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  62. [62]
    S. Das, P. Ramadevi, U.A. Yajnik and A. Sule, Black hole area quantization. II: charged black holes, Phys. Lett. B 565 (2003) 201 [hep-th/0207169] [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    D. Martelli and J. Sparks, AdS 4/CFT 3 duals from M2-branes at hypersurface singularities and their deformations, JHEP 12 (2009) 017 [arXiv:0909.2036] [SPIRES].CrossRefGoogle Scholar
  64. [64]
    A. Mikhailov, Giant gravitons from holomorphic surfaces, hep-th/0010206 [SPIRES].
  65. [65]
    C. Alastair and I. Akira, Flops of G-Hilb and equivalences of derived categories by variation of GIT quotient, math.AG/0211360 [SPIRES].
  66. [66]
    Y. Imamura, Charges and homologies in AdS 4 /CFT 3, arXiv:0903.3095 [SPIRES].
  67. [67]
    E. Witten, Duality relations among topological effects in string theory, JHEP 05 (2000) 031 [hep-th/9912086] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  68. [68]
    N. Lambert and P. Richmond, M2-branes and background fields, JHEP 10 (2009) 084 [arXiv:0908.2896] [SPIRES].CrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsOxford UniversityOxfordU.K.
  2. 2.Merton CollegeUniversity of OxfordOxfordU.K.
  3. 3.Mathematical InstituteUniversity of OxfordOxfordU.K.

Personalised recommendations