Advertisement

Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension

  • Stefan Dittmaier
  • Max Huber
Open Access
Article

Abstract

An adequate description of the neutral-current Drell-Yan process at the Tevatron and the LHC, in particular, requires the inclusion of electroweak radiative corrections. We extend earlier work in this direction in various ways. First, we define and numerically compare different methods to describe the Z-boson resonance including next-to-leading order electroweak corrections; moreover, we provide explicit analytical expressions for those. Second, we pay particular attention to contributions from γγ and γ-quark collisions, which involve photons in the initial state, and work out how their impact can be enhanced by selection cuts. Third, we supplement the \( \mathcal{O} \)(α) corrections by universal electroweak effects of higher order, such as universal two-loop contributions from ∆α and ∆ρ, and the leading two-loop corrections in the high-energy Sudakov regime as well as multi-photon radiation off muons in the structure-function approach. Finally, we present results on the complete next-to-leading order electroweak and QCD corrections within the minimal supersymmetric extension of the Standard Model.

Keywords

Hadron-Hadron Scattering 

References

  1. [1]
    TeV4LHC-Top and Electroweak Working Group collaboration, C.E. Gerber et al., Tevatron-for-LHC report: top and electroweak physics, arXiv:0705.3251 [SPIRES].
  2. [2]
    TeV4LHC Working Group collaboration, S. Abdullin et al., Tevatron-for-LHC report: preparations for discoveries, hep-ph/0608322 [SPIRES].
  3. [3]
    S. Haywood et al., Electroweak physics, hep-ph/0003275 [SPIRES].
  4. [4]
    R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [SPIRES].ADSCrossRefGoogle Scholar
  5. [5]
    W.L. van Neerven and E.B. Zijlstra, The O2 s) corrected Drell-Yan K factor in the DIS and MS scheme, Nucl. Phys. B 382 (1992) 11 [Erratum ibid. B 680 (2004) 513] [SPIRES].ADSCrossRefGoogle Scholar
  6. [6]
    R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].ADSCrossRefGoogle Scholar
  7. [7]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO, Phys. Rev. D 69 (2004) 094008 [hep-ph/0312266] [SPIRES].ADSGoogle Scholar
  9. [9]
    K. Melnikov and F. Petriello, The W boson production cross section at the LHC through O2 s), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [SPIRES]ADSCrossRefGoogle Scholar
  10.  .
    Electroweak gauge boson production at hadron colliders through O(αs2), Phys. Rev.D 74 (2006) 114017 [hep-ph/0609070] [SPIRES].
  11. [10]
    S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [SPIRES].ADSCrossRefGoogle Scholar
  12. [11]
    S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].ADSGoogle Scholar
  13. [12]
    E. Laenen and L. Magnea, Threshold resummation for electroweak annihilation from DIS data, Phys. Lett. B 632 (2006) 270 [hep-ph/0508284] [SPIRES].ADSGoogle Scholar
  14. [13]
    A. Idilbi, X.-D. Ji, J.-P. Ma and F. Yuan, Threshold resummation for Higgs production in effective field theory, Phys. Rev. D 73 (2006) 077501 [hep-ph/0509294] [SPIRES].ADSGoogle Scholar
  15. [14]
    V. Ravindran and J. Smith, Threshold corrections to rapidity distributions of Z and W ± bosons beyond N 2 LO at hadron colliders, Phys. Rev. D 76 (2007) 114004 [arXiv:0708.1689] [SPIRES].ADSGoogle Scholar
  16. [15]
    S. Frixione and B.R. Webber, The MCNLO 3.3 event generator, hep-ph/0612272 [SPIRES].
  17. [16]
    P.B. Arnold and R.P. Kauffman, W and Z production at next-to-leading order: from large q(t) to small, Nucl. Phys. B 349 (1991) 381 [SPIRES].ADSCrossRefGoogle Scholar
  18. [17]
    C. Balázs, J.-W. Qiu and C.P. Yuan, Effects of QCD resummation on distributions of leptons from the decay of electroweak vector bosons, Phys. Lett. B 355 (1995) 548 [hep-ph/9505203] [SPIRES].ADSGoogle Scholar
  19. [18]
    C. Balázs and C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders, Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [SPIRES].ADSGoogle Scholar
  20. [19]
    R.K. Ellis, D.A. Ross and S. Veseli, Vector boson production in hadronic collisions, Nucl. Phys. B 503 (1997) 309 [hep-ph/9704239] [SPIRES].ADSCrossRefGoogle Scholar
  21. [20]
    R.K. Ellis and S. Veseli, W and Z transverse momentum distributions: resummation in q T space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [SPIRES].ADSCrossRefGoogle Scholar
  22. [21]
    J.-W. Qiu and X.-F. Zhang, QCD prediction for heavy boson transverse momentum distributions, Phys. Rev. Lett. 86 (2001) 2724 [hep-ph/0012058] [SPIRES]ADSCrossRefGoogle Scholar
  23.  .
    Role of the nonperturbative input in QCD resummed Drell-Yan qTdistributions, Phys. Rev.D 63 (2001) 114011 [hep-ph/0012348] [SPIRES].
  24. [22]
    A. Kulesza and W.J. Stirling, Soft gluon resummation in transverse momentum space for electroweak boson production at hadron colliders, Eur. Phys. J. C 20 (2001) 349 [hep-ph/0103089] [SPIRES].ADSCrossRefGoogle Scholar
  25. [23]
    A. Kulesza, G. Sterman and W. Vogelsang, Joint resummation in electroweak boson production, Phys. Rev. D 66 (2002) 014011 [hep-ph/0202251] [SPIRES].ADSGoogle Scholar
  26. [24]
    F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016 [hep-ph/0212159] [SPIRES].ADSGoogle Scholar
  27. [25]
    S. Berge, P.M. Nadolsky and F.I. Olness, Heavy-flavor effects in soft gluon resummation for electroweak boson production at hadron colliders, Phys. Rev. D 73 (2006) 013002 [hep-ph/0509023] [SPIRES].ADSGoogle Scholar
  28. [26]
    G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Transverse-momentum resummation: a perturbative study of Z production at the Tevatron, Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [SPIRES].CrossRefGoogle Scholar
  29. [27]
    U. Baur, S. Keller and D. Wackeroth, Electroweak radiative corrections to W boson production in hadronic collisions, Phys. Rev. D 59 (1999) 013002 [hep-ph/9807417] [SPIRES].ADSGoogle Scholar
  30. [28]
    V.A. Zykunov, Electroweak corrections to the observables of W-boson production at RHIC, Eur. Phys. J. Direct C 3 (2001) 9 [hep-ph/0107059] [SPIRES].Google Scholar
  31. [29]
    U. Baur and D. Wackeroth, Electroweak radiative corrections to \( p\bar p \)W ± → ℓ± ν beyond the pole approximation, Phys. Rev. D 70 (2004) 073015 [hep-ph/0405191] [SPIRES].ADSGoogle Scholar
  32. [30]
    A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. I: the charged current case, Eur. Phys. J. C 46 (2006) 407 [Erratum ibid. C 50 (2007) 505] [hep-ph/0506110] [SPIRES].ADSCrossRefGoogle Scholar
  33. [31]
    S. Dittmaier and M. Krämer, Electroweak radiative corrections to W-boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [SPIRES].ADSGoogle Scholar
  34. [32]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the charged current Drell-Yan process, JHEP 12 (2006) 016 [hep-ph/0609170] [SPIRES].ADSCrossRefGoogle Scholar
  35. [33]
    U. Baur, S. Keller and W.K. Sakumoto, QED radiative corrections to Z boson production and the forward backward asymmetry at hadron colliders, Phys. Rev. D 57 (1998) 199 [hep-ph/9707301] [SPIRES].ADSGoogle Scholar
  36. [34]
    U. Baur, O. Brein, W. Hollik, C. Schappacher and D. Wackeroth, Electroweak radiative corrections to neutral current Drell-Yan processes at hadron colliders, Phys. Rev. D 65 (2002) 033007 [hep-ph/0108274] [SPIRES].ADSGoogle Scholar
  37. [35]
    V.A. Zykunov, Weak radiative corrections to the Drell-Yan process for large invariant mass of a dilepton pair, Phys. Rev. D 75 (2007) 073019 [hep-ph/0509315] [SPIRES].ADSGoogle Scholar
  38. [36]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP 10 (2007) 109 [arXiv:0710.1722] [SPIRES].ADSCrossRefGoogle Scholar
  39. [37]
    A. Arbuzov et al., One-loop corrections to the Drell-Yan process in SANC. (II). The neutral current case, Eur. Phys. J. C 54 (2008) 451 [arXiv:0711.0625] [SPIRES].ADSCrossRefGoogle Scholar
  40. [38]
    C. Buttar et al., Les Houches physics at TeV colliders 2005, Standard Model and Higgs working group: summary report, hep-ph/0604120 [SPIRES].
  41. [39]
    C. Buttar et al., Standard Model handles and Candles working group: tools and jets summary report, arXiv:0803.0678 [SPIRES].
  42. [40]
    S. Dittmaier and M. Krämer, Tuned comparison of electroweak corrections to Drell-Yan-like W- and Z-boson production — a status report, in Les Houches physics at TeV colliders 2005, Standard Model and Higgs working group: summary report, section 10 hep-ph/0604120 [SPIRES].
  43. [41]
    A.B. Arbuzov and R.R. Sadykov, Inverse Bremsstrahlung contributions to Drell-Yan like processes, J. Exp. Theor. Phys. 106 (2008) 488 [arXiv:0707.0423] [SPIREs].ADSCrossRefGoogle Scholar
  44. [42]
    S. Brensing, S. Dittmaier, M. Krämer and A. Mück, Radiative corrections to W boson hadroproduction: higher-order electroweak and supersymmetric effects, Phys. Rev. D 77 (2008) 073006 [arXiv:0710.3309] [SPIRES].ADSGoogle Scholar
  45. [43]
    W. Placzek and S. Jadach, Multiphoton radiation in leptonic W-boson decays, Eur. Phys. J. C 29 (2003) 325 [hep-ph/0302065] [SPIRES].ADSGoogle Scholar
  46. [44]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and M. Treccani, Higher-order QED corrections to W-boson mass determination at hadron colliders, Phys. Rev. D 69 (2004) 037301 [hep-ph/0303102] [SPIRES].ADSGoogle Scholar
  47. [45]
    C.M. Carloni Calame, S. Jadach, G. Montagna, O. Nicrosini and W. Placzek, Comparisons of the Monte Carlo programs HORACE and WINHAC for single W-boson production at hadron colliders, Acta Phys. Polon. B 35 (2004) 1643 [hep-ph/0402235] [SPIRES].ADSGoogle Scholar
  48. [46]
    C.M. Carloni Calame, G. Montagna, O. Nicrosini and M. Treccani, Multiple photon corrections to the neutral-current Drell-Yan process, JHEP 05 (2005) 019 [hep-ph/0502218] [SPIRES].ADSCrossRefGoogle Scholar
  49. [47]
    G. Balossini et al., Electroweak & QCD corrections to Drell-Yan processes, Acta Phys. Polon. B 39 (2008) 1675 [arXiv:0805.1129] [SPIRES].ADSGoogle Scholar
  50. [48]
    G. Balossini et al., Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC, arXiv:0907.0276 [SPIRES].
  51. [49]
    A. Kotikov, J.H. Kühn and O. Veretin, Two-loop formfactors in theories with mass gap and Z-boson production, Nucl. Phys. B 788 (2008) 47 [hep-ph/0703013] [SPIRES].ADSCrossRefGoogle Scholar
  52. [50]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [SPIRES].ADSCrossRefGoogle Scholar
  53. [51]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [hep-ph/0505042] [SPIRES].ADSCrossRefGoogle Scholar
  54. [52]
    R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z 0 resonance, Phys. Lett. B 262 (1991) 113 [SPIRES].ADSGoogle Scholar
  55. [53]
    A. Aeppli, F. Cuypers and G.J. van Oldenborgh, O(γ) corrections to W pair production in e + e and γγ collisions, Phys. Lett. B 314 (1993) 413 [hep-ph/9303236] [SPIRES].ADSGoogle Scholar
  56. [54]
    A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [SPIRES].ADSCrossRefGoogle Scholar
  57. [55]
    H.G.J. Veltman, Mass and width of unstable gauge bosons, Z. Phys. C 62 (1994) 35 [SPIRES].ADSGoogle Scholar
  58. [56]
    A. Denner and S. Dittmaier, Production of light fermion antifermion pairs in γγ collisions, Eur. Phys. J. C 9 (1999) 425 [hep-ph/9812411] [SPIRES.ADSGoogle Scholar
  59. [57]
    E.A. Kuraev and V.S. Fadin, On radiative corrections to e + e single photon annihilation at high-energy, Sov. J. Nucl. Phys. 41 (1985) 466 [Yad. Fiz. 41 (1985) 733] [SPIRES].Google Scholar
  60. [58]
    G. Altarelli and G. Martinelli, Radiative corrections to the Z 0 line shape at LEP, in Physics at LEP, volume 1, J. Ellis and R.D. Peccei eds., (1986) pg. 47 [SPIRES].
  61. [59]
    O. Nicrosini and L. Trentadue, Soft photons and second order radiative corrections to e + e Z 0, Phys. Lett. B 196 (1987) 551 [SPIRES].ADSGoogle Scholar
  62. [60]
    O. Nicrosini and L. Trentadue, Second order electromagnetic radiative corrections to e + e → γ*, Z 0 → μ+μ, Z. Phys. C 39 (1988) 479 [SPIRES].ADSGoogle Scholar
  63. [61]
    F.A. Berends, W.L. van Neerven and G.J.H. Burgers, Higher order radiative corrections at LEP energies, Nucl. Phys. B 297 (1988) 429 [Erratum ibid. B 304 (1988) 921] [SPIRES].ADSCrossRefGoogle Scholar
  64. [62]
    A.B. Arbuzov, Non-singlet splitting functions in QED, Phys. Lett. B 470 (1999) 252 [hep-ph/9908361] [SPIRES].ADSGoogle Scholar
  65. [63]
    A. Denner and S. Dittmaier, The complex-mass scheme for perturbative calculations with unstable particles, Nucl. Phys. (Proc. Suppl.) 160 (2006) 22 [hep-ph/0605312] [SPIRES].ADSCrossRefGoogle Scholar
  66. [64]
    M.W. Grunewald et al., Four-fermion production in electron positron collisions, in Reports of the working groups on precision calculations for LEP2 physics,S. Jadach, G. Passarino and R. Pittau eds., CERN 2000-009, Geneva Switzerland (2000), pg. 1 [hep-ph/0005309] [SPIRES].
  67. [65]
    S. Dittmaier and A. Kaiser, Photonic and QCD radiative corrections to Higgs boson production in μ+μ\( f\bar f \), Phys. Rev. D 65 (2002) 113003 [hep-ph/0203120] [SPIRES].ADSGoogle Scholar
  68. [66]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys. 41 (1993) 307 [arXiv:0709.1075] [SPIRES].Google Scholar
  69. [67]
    D.Y. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy dependent width effects in e + e annihilation near the Z pole, Phys. Lett. B 206 (1988) 539 [SPIRES].ADSGoogle Scholar
  70. [68]
    W. Beenakker et al., The fermion loop scheme for finite width effects in e + e annihilation into four fermions, Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260] [SPIRES].ADSCrossRefGoogle Scholar
  71. [69]
    A. Sirlin, Theoretical considerations concerning the Z 0 mass, Phys. Rev. Lett. 67 (1991) 2127 [SPIRES].ADSCrossRefGoogle Scholar
  72. [70]
    A. Sirlin, Observations concerning mass renormalization in the electroweak theory, Phys. Lett. B 267 (1991) 240 [SPIRES].ADSGoogle Scholar
  73. [71]
    R.G. Stuart, The structure of the Z 0 resonance and the physical properties of the Z 0 boson, Phys. Rev. Lett. 70 (1993) 3193 [SPIRES].ADSCrossRefGoogle Scholar
  74. [72]
    P. Gambino and P.A. Grassi, The Nielsen identities of the SM and the definition of mass, Phys. Rev. D 62 (2000) 076002 [hep-ph/9907254] [SPIRES].ADSGoogle Scholar
  75. [73]
    P.A. Grassi, B.A. Kniehl and A. Sirlin, Width and partial widths of unstable particles in the light of the Nielsen identities, Phys. Rev. D 65 (2002) 085001 [hep-ph/0109228] [SPIRES].ADSGoogle Scholar
  76. [74]
    A. Sirlin, Radiative corrections in the SU(2)L × U(1) theory: a simple renormalization framework, Phys. Rev. D 22 (1980) 971 [SPIRES].ADSGoogle Scholar
  77. [75]
    W.J. Marciano and A. Sirlin, Radiative corrections to neutrino induced neutral current phenomena in the SU(2)L × U(1) theory, Phys. Rev. D 22 (1980) 2695 [Erratum ibid. D 31 (1980) 213] [SPIRES].ADSGoogle Scholar
  78. [76]
    A. Sirlin and W.J. Marciano, Radiative corrections to muon-neutrino N → μ X and their effect on the determination of ρ 2 and sin2θW, Nucl. Phys. B 189 (1981) 442 [SPIRES].ADSCrossRefGoogle Scholar
  79. [77]
    G. Altarelli, R. Kleiss and C. Verzegnassi eds., Z physics at LEP1, volume 1, CERN 89-08, Geneva Switzerland (1989).Google Scholar
  80. [78]
    D.Y. Bardin, M. Grunewald and G. Passarino, Precision calculation project report, hep-ph/9902452 [SPIRES].
  81. [79]
    J. Küblbeck, M. Böhm and A. Denner, FeynArts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [SPIRES].ADSCrossRefGoogle Scholar
  82. [80]
    H. Eck and J. Küblbeck, Guide to FeynArts 1.0, University of Würzburg, Würzburg Germany (1992).Google Scholar
  83. [81]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].MATHADSCrossRefGoogle Scholar
  84. [82]
    T. Hahn and M. Pérez-Victoria, Automatized one-loop calculations in four and D dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [SPIRES].ADSCrossRefGoogle Scholar
  85. [83]
    T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. (Proc. Suppl.) 89 (2000) 231ADSCrossRefGoogle Scholar
  86. [84]
    T. Hahn, Automatic loop calculations with FeynArts, FormCalc and LoopTools, Nucl. Phys. (Proc. Suppl.) 89 (2000) 231 [hep-ph/0005029] [SPIRES].ADSCrossRefGoogle Scholar
  87. [85]
    R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [SPIRES].
  88. [86]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ+μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [SPIRES].ADSCrossRefGoogle Scholar
  89. [87]
    G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365 [SPIRES].ADSCrossRefGoogle Scholar
  90. [88]
    W. Beenakker and A. Denner, Infrared divergent scalar box integrals with applications in the electroweak Standard Model, Nucl. Phys. B 338 (1990) 349 [SPIRES].ADSCrossRefGoogle Scholar
  91. [89]
    A. Denner, U. Nierste and R. Scharf, A compact expression for the scalar one loop four point function, Nucl. Phys. B 367 (1991) 637 [SPIRES].ADSCrossRefGoogle Scholar
  92. [90]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [SPIRES].ADSCrossRefGoogle Scholar
  93. [91]
    A. Denner and S. Dittmaier, The scalar four-point function, in preparation.Google Scholar
  94. [92]
    S. Dittmaier, Separation of soft and collinear singularities from one-loop N-point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  95. [93]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP 08 (2008) 108 [arXiv:0807.1248] [SPIRES].
  96. [94]
    S. Dittmaier, Weyl-van-der-Waerden formalism for helicity amplitudes of massive particles, Phys. Rev. D 59 (1999) 016007 [hep-ph/9805445] [SPIRES].ADSGoogle Scholar
  97. [95]
    S. Dittmaier, A general approach to photon radiation off fermions, Nucl. Phys. B 565 (2000) 69 [hep-ph/9904440] [SPIRES].ADSCrossRefGoogle Scholar
  98. [96]
    S. Dittmaier, A. Kabelschacht and T. Kasprzik, Polarized QED splittings of massive fermions and dipole subtraction for non-collinear-safe observables, Nucl. Phys. B 800 (2008) 146 [arXiv:0802.1405] [SPIRES].ADSCrossRefGoogle Scholar
  99. [97]
    K.P.O. Diener, S. Dittmaier and W. Hollik, Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering, Phys. Rev. D 72 (2005) 093002 [hep-ph/0509084] [SPIRES].ADSGoogle Scholar
  100. [98]
    A.D. Martin, R.G. Roberts, W.J. Stirling and R.S. Thorne, Parton distributions incorporating QED contributions, Eur. Phys. J. C 39 (2005) 155 [hep-ph/0411040] [SPIRES].ADSCrossRefGoogle Scholar
  101. [99]
    H. Burkhardt and B. Pietrzyk, Update of the hadronic contribution to the QED vacuum polarization, Phys. Lett. B 356 (1995) 398 [SPIRES].ADSGoogle Scholar
  102. [100]
    S. Eidelman and F. Jegerlehner, Hadronic contributions to g-2 of the leptons and to the effective fine structure constant α(M 2 z), Z. Phys. C 67 (1995) 585 [hep-ph/9502298] [SPIRES].ADSGoogle Scholar
  103. [101]
    M. Consoli, W. Hollik and F. Jegerlehner, Electroweak radiative corrections for Z physics, presented at Workshop on Z Physics at LEP, CERN-TH-5527-89, Cern, Geneva Switzerland (1989) [SPIRES].
  104. [102]
    M. Consoli, W. Hollik and F. Jegerlehner, The effect of the top quark on the M(W)-M(Z) interdependence and possible decoupling of heavy fermions from low-energy physics, Phys. Lett. B 227 (1989) 167 [SPIRES].ADSGoogle Scholar
  105. [103]
    J. Fleischer, O.V. Tarasov and F. Jegerlehner, Two loop heavy top corrections to the rho parameter: A Simple formula valid for arbitrary Higgs mass, Phys. Lett. B 319 (1993) 249 [SPIRES].ADSGoogle Scholar
  106. [104]
    V.S. Fadin, L.N. Lipatov, A.D. Martin and M. Melles, Resummation of double logarithms in electroweak high energy processes, Phys. Rev. D 61 (2000) 094002 [hep-ph/9910338] [SPIRES].ADSGoogle Scholar
  107. [105]
    M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [SPIRES].ADSCrossRefGoogle Scholar
  108. [106]
    M. Hori, H. Kawamura and J. Kodaira, Electroweak Sudakov at two loop level, Phys. Lett. B 491 (2000) 275 [hep-ph/0007329] [SPIRES].ADSGoogle Scholar
  109. [107]
    M. Melles, Resummation of angular dependent corrections in spontaneously broken gauge theories, Eur. Phys. J. C 24 (2002) 193 [hep-ph/0108221] [SPIRES].ADSGoogle Scholar
  110. [108]
    W. Beenakker and A. Werthenbach, Electroweak two-loop Sudakov logarithms for on-shell fermions and bosons, Nucl. Phys. B 630 (2002) 3 [hep-ph/0112030] [SPIRES].ADSCrossRefGoogle Scholar
  111. [109]
    A. Denner, M. Melles and S. Pozzorini, Two-loop electroweak angular-dependent logarithms at high energies, Nucl. Phys. B 662 (2003) 299 [hep-ph/0301241] [SPIRES].ADSCrossRefGoogle Scholar
  112. [110]
    B. Jantzen, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms, Phys. Rev. D 72 (2005) 051301 [Erratum ibid. D 74 (2006) 019901] [hep-ph/0504111] [SPIRES].ADSGoogle Scholar
  113. [111]
    B. Jantzen, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms in four-fermion processes at high energy, Nucl. Phys. B 731 (2005) 188 [Erratum ibid. B 752 (2006) 327] [hep-ph/0509157] [SPIRES].ADSGoogle Scholar
  114. [112]
    A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B 761 (2007) 1 [hep-ph/0608326] [SPIRES].ADSCrossRefGoogle Scholar
  115. [113]
    P. Ciafaloni and D. Comelli, The importance of weak bosons emission at LHC, JHEP 09 (2006) 055 [hep-ph/0604070] [SPIRES].ADSCrossRefGoogle Scholar
  116. [114]
    U. Baur, Weak boson emission in hadron collider processes, Phys. Rev. D 75 (2007) 013005 [hep-ph/0611241] [SPIRES].ADSGoogle Scholar
  117. [115]
    T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [SPIRES].MATHADSCrossRefGoogle Scholar
  118. [116]
    T.D. Lee and M. Nauenberg, Degenerate systems and mass singularities, Phys. Rev. 133 (1964) B1549 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  119. [117]
    Particle Data Group collaboration, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1 [SPIRES].ADSGoogle Scholar
  120. [118]
    F. Jegerlehner, The effective fine structure constant at TESLA energies, DESY 01-029 [LC-TH-2001-035] [hep-ph/0105283] [SPIRES].
  121. [119]
    B.C. Allanach et al., The Snowmass points and slopes: benchmarks for SUSY searches, Eur. Phys. J. C 25 (2002) 113 [eConf C 010630 (2001) P125] [hep-ph/0202233] [SPIRES].ADSCrossRefGoogle Scholar
  122. [120]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [SPIRES].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Albert-Ludwigs-Universität FreiburgPhysikalisches InstitutFreiburgGermany
  2. 2.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MünchenGermany

Personalised recommendations