No forbidden landscape in string/M-theory

  • Yu Nakayama
Open Access


Scale invariant but non-conformal field theories are forbidden in (1 + 1) dimension, and so should be the corresponding holographic dual gravity theories. We conjecture that such scale invariant but non-conformal field configurations do not exist in the string/M-theory. We provide a proof of this conjecture in the classical supergravity limit when the space-time is trivially fibered over the compact space. Our proof does also apply in higher dimensional scale invariant but non-conformal field configurations, which suggests that scale invariant but non-conformal field theories may be forbidden in higher dimensions as well.


AdS-CFT Correspondence Models of Quantum Gravity Conformal and W Symmetry M-Theory 


  1. [1]
    C. Vafa, The string landscape and the swampland, hep-th/0509212 [SPIRES].
  2. [2]
    H. Ooguri and C. Vafa, On the geometry of the string landscape and the swampland, Nucl. Phys. B 766 (2007) 21 [hep-th/0605264] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    G. ’t Hooft, Dimensional reduction in quantum gravity ’Salamfest’, A. Ali, J. Ellis and S Randjbar-Daemi eds., World Scientific, Singapore (1993) pg. 284.Google Scholar
  4. [4]
    L. Susskind, The world as a hologram, J. Math. Phys. 36 (1995) 6377 [hep-th/9409089] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  5. [5]
    S. Hellerman, A universal inequality for CFT and quantum gravity, arXiv:0902.2790 [SPIRES].
  6. [6]
    Y. Nakayama, Forbidden landscape from holography, arXiv:0907.0227 [SPIRES].
  7. [7]
    J. Polchinski, Scale and conformal invariance in quantum field theory, Nucl. Phys. B 303 (1988) 226 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    C.M. Hull and P.K. Townsend, Finiteness and conformal invariance in nonlinear Σ models, Nucl. Phys. B 274 (1986) 349 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    V. Riva and J.L. Cardy, Scale and conformal invariance in field theory: a physical counterexample, Phys. Lett. B 622 (2005) 339 [hep-th/0504197] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    C.M. Ho and Y. Nakayama, Dangerous Liouville wave — exactly marginal but non-conformal deformation, JHEP 07 (2008) 109 [arXiv:0804.3635] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  11. [11]
    A.M. Awad and C.V. Johnson, Scale invariance and the AdS/CFT correspondence, Int. J. Mod. Phys. A 16S1C (2001) 1008 [hep-th/0011092] [SPIRES].MathSciNetGoogle Scholar
  12. [12]
    G.W. Gibbons, Supersymmetry, supergravity and related topics, F. de Aguila, J.A. de Azcarraga, L.E. Ibanez eds., World Scientific, Singapore (1985).Google Scholar
  13. [13]
    A.B. Zamolodchikov, Irreversibility of the flux of the renormalization group in a 2D field theory, JETP Lett. 43 (1986) 730 [Pisma Zh. Eksp. Teor. Fiz. 43 (1986) 565] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    D.Z. Freedman, S.S. Gubser, K. Pilch and N.P. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [SPIRES].MATHMathSciNetGoogle Scholar
  15. [15]
    J.P. Gauntlett, D. Martelli, J. Sparks and S.T. Yau, Obstructions to the existence of Sasaki-Einstein metrics, Commun. Math. Phys. 273 (2007) 803 [hep-th/0607080] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  16. [16]
    Y. Nakayama, Black hole - string transition and rolling D-brane, hep-th/0702221 [SPIRES].
  17. [17]
    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    B. Freivogel, Y. Sekino, L. Susskind and C.P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    Y. Sekino and L. Susskind, Census taking in the Hat: FRW/CFT duality, Phys. Rev. D 80 (2009) 083531 [arXiv:0908.3844] [SPIRES].Google Scholar
  21. [21]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].MathSciNetADSGoogle Scholar
  22. [22]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].MATHMathSciNetGoogle Scholar
  23. [23]
    I. Heemskerk, J. Penedones, J. Polchinski and J. Sully, Holography from conformal field theory, arXiv:0907.0151 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Berkeley Center for Theoretical PhysicsUniversity of CaliforniaBerkeleyU.S.A.

Personalised recommendations