Non-relativistic matrix inflation

  • Aaron Berndsen
  • James E. Lidsey
  • John Ward


We reconsider a string theoretic inflationary model, where inflation is driven by n multiple coincident D3-branes in the finite n limit. We show that the finite n action can be continued to the limit of large n, where it converges to the action for a wrapped D5-brane with n units of U(1) flux. This provides an important consistency check of the scenario and allows for more control over certain back-reaction effects. We determine the most general form of the action for a specific sub-class of models and examine the non-relativistic limits of the theory where the branes move at speeds much less than the speed of light. The non-Abelian nature of the world-volume theory implies that the inflaton field is matrix valued and this results in modifications to the slow-roll parameters and Hubble-flow equations. A specific model of inflation is investigated where the branes move out of an AdS throat, and observational constraints are employed to place bounds on the background fluxes.


Strings and branes phenomenology 


  1. [1]
    G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    R.C. Brower, S.D. Mathur and C.-I. Tan, Glueball Spectrum for QCD from AdS supergravity duality, Nucl. Phys. B 587 (2000) 249 [hep-th/0003115] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    M. Lüscher and P. Weisz, Quark confinement and the bosonic string, JHEP 07 (2002) 049 [hep-lat/0207003] [SPIRES].CrossRefGoogle Scholar
  4. [4]
    WMAP collboration, D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology, Astrophys. J. Suppl. 170 (2007) 377 [astro-ph/0603449] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χ SB -resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    C.P. Herzog, I.R. Klebanov and P. Ouyang, Remarks on the warped deformed conifold, hep-th/0108101 [SPIRES].
  8. [8]
    E. Silverstein and D. Tong, Scalar speed limits and cosmology: acceleration from D-celeration, Phys. Rev. D 70 (2004) 103505 [hep-th/0310221] [SPIRES].MathSciNetADSGoogle Scholar
  9. [9]
    M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D 70 (2004) 123505 [hep-th/0404084] [SPIRES].ADSGoogle Scholar
  10. [10]
    M.A. Ganjali, DBI with primordial magnetic field in the sky, JHEP 09 (2005) 004 [hep-th/0509032] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    X. Chen, Multi-throat brane inflation, Phys. Rev. D 71 (2005) 063506 [hep-th/0408084] [SPIRES].ADSGoogle Scholar
  12. [12]
    X. Chen, Inflation from warped space, JHEP 08 (2005) 045 [hep-th/0501184] [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    S. Kecskemeti, J. Maiden, G. Shiu and B. Underwood, DBI inflation in the tip region of a warped throat, JHEP 09 (2006) 076 [hep-th/0605189] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    L. Alabidi and J.E. Lidsey, Single-field inflation after WMAP5, Phys. Rev. D 78 (2008) 103519 [arXiv:0807.2181] [SPIRES].ADSGoogle Scholar
  15. [15]
    X. Chen, Fine-tuning in DBI inflationary mechanism, JCAP 12 (2008) 009 [arXiv:0807.3191] [SPIRES].ADSGoogle Scholar
  16. [16]
    D. Baumann and L. McAllister, A microscopic limit on gravitational waves from D-brane inflation, Phys. Rev. D 75 (2007) 123508 [hep-th/0610285] [SPIRES].ADSGoogle Scholar
  17. [17]
    J.E. Lidsey and I. Huston, Gravitational wave constraints on Dirac-Born-Infeld inflation, JCAP 07 (2007) 002 [arXiv:0705.0240] [SPIRES].ADSGoogle Scholar
  18. [18]
    D. Langlois, S. Renaux-Petel and D.A. Steer, Multi-field DBI inflation: introducing bulk forms and revisiting the gravitational wave constraints, JCAP 04 (2009) 021 [arXiv:0902.2941] [SPIRES].ADSGoogle Scholar
  19. [19]
    D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial fluctuations and non-gaussianities in multi-field DBI inflation, Phys. Rev. Lett. 101 (2008) 061301 [arXiv:0804.3139] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    D. Langlois, S. Renaux-Petel, D.A. Steer and T. Tanaka, Primordial perturbations and non-Gaussianities in DBI and general multi-field inflation, Phys. Rev. D 78 (2008) 063523 [arXiv:0806.0336] [SPIRES].ADSGoogle Scholar
  21. [21]
    M.-x. Huang, G. Shiu and B. Underwood, Multifield DBI inflation and non-gaussianities, Phys. Rev. D 77 (2008) 023511 [arXiv:0709.3299] [SPIRES].ADSGoogle Scholar
  22. [22]
    Y.-F. Cai and W. Xue, N-flation from multiple DBI type actions, Phys. Lett. B 680 (2009) 395 [arXiv:0809.4134] [SPIRES].Google Scholar
  23. [23]
    Y.-F. Cai and H.-Y. Xia, Inflation with multiple sound speeds: a model of multiple DBI type actions and non-gaussianities, Phys. Lett. B 677 (2009) 226 [arXiv:0904.0062] [SPIRES].ADSGoogle Scholar
  24. [24]
    J.M. Cline and H. Stoica, Multibrane inflation and dynamical flattening of the inflaton potential, Phys. Rev. D 72 (2005) 126004 [hep-th/0508029] [SPIRES].ADSGoogle Scholar
  25. [25]
    E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation, Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [SPIRES].ADSGoogle Scholar
  26. [26]
    D.A. Easson, R. Gregory, D.F. Mota, G. Tasinato and I. Zavala, Spinflation, JCAP 02 (2008) 010 [arXiv:0709.2666] [SPIRES].MathSciNetADSGoogle Scholar
  27. [27]
    T. Kobayashi, S. Mukohyama and S. Kinoshita, Constraints on wrapped DBI inflation in a warped throat, JCAP 01 (2008) 028 [arXiv:0708.4285] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    M. Becker, L. Leblond and S.E. Shandera, Inflation from wrapped branes, Phys. Rev. D 76 (2007) 123516 [arXiv:0709.1170] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053] [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    S. Thomas and J. Ward, Electrified fuzzy spheres and funnels in curved backgrounds, JHEP 11 (2006) 019 [hep-th/0602071] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    I. Alvarez Illan, Dielectric branes in non-trivial backgrounds, Mod. Phys. Lett. A 24 (2009) 1411 [arXiv:0906.4709] [SPIRES].ADSGoogle Scholar
  32. [32]
    A.A. Tseytlin, On non-abelian generalisation of the Born-Infeld action in string theory, Nucl. Phys. B 501 (1997) 41 [hep-th/9701125] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  33. [33]
    P.S. Howe, U. Lindström and L. Wulff, On the covariance of the Dirac-Born-Infeld-Myers action, JHEP 02 (2007) 070 [hep-th/0607156] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    P.S. Howe, U. Lindström and L. Wulff, κ-symmetry for coincident D-branes, JHEP 09 (2007) 010 [arXiv:0706.2494] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    R. Iengo and J.G. Russo, New non-abelian effects on D-branes, Nucl. Phys. B 799 (2008) 150 [arXiv:0710.3449] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    J.G. Russo, Non-abelian effects on D-branes, AIP Conf. Proc. 1031 (2008) 148 [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    C.M. Brown and O. DeWolfe, Brane/flux annihilation transitions and nonperturbative moduli stabilization, JHEP 05 (2009) 018 [arXiv:0901.4401] [SPIRES].CrossRefADSGoogle Scholar
  38. [38]
    S. Ramgoolam, B.J. Spence and S. Thomas, Resolving brane collapse with 1/N corrections in non-abelian DBI, Nucl. Phys. B 703 (2004) 236 [hep-th/0405256] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    S. McNamara, C. Papageorgakis, S. Ramgoolam and B. Spence, Finite N effects on the collapse of fuzzy spheres, JHEP 05 (2006) 060 [hep-th/0512145] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    O. DeWolfe, S. Kachru and H.L. Verlinde, The giant inflaton, JHEP 05 (2004) 017 [hep-th/0403123] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    I. Huston, J.E. Lidsey, S. Thomas and J. Ward, Gravitational wave constraints on multi-brane inflation, JCAP 05 (2008) 016 [arXiv:0802.0398] [SPIRES].ADSGoogle Scholar
  42. [42]
    J. Ward, DBI N-flation, JHEP 12 (2007) 045 [arXiv:0711.0760] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    S. Thomas and J. Ward, IR Inflation from multiple branes, Phys. Rev. D 76 (2007) 023509 [hep-th/0702229] [SPIRES].ADSGoogle Scholar
  44. [44]
    K. Tzirakis and W.H. Kinney, Non-canonical generalizations of slow-roll inflation models, JCAP 01 (2009) 028 [arXiv:0810.0270] [SPIRES].ADSGoogle Scholar
  45. [45]
    W.H. Kinney and K. Tzirakis, Quantum modes in DBI inflation: exact solutions and constraints from vacuum selection, Phys. Rev. D 77 (2008) 103517 [arXiv:0712.2043] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    H.V. Peiris, D. Baumann, B. Friedman and A. Cooray, Phenomenology of D-brane inflation with general speed of sound, Phys. Rev. D 76 (2007) 103517 [arXiv:0706.1240] [SPIRES].ADSGoogle Scholar
  47. [47]
    A. Avgoustidis, D. Cremades and F. Quevedo, Wilson line inflation, Gen. Rel. Grav. 39 (2007) 1203 [hep-th/0606031] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  48. [48]
    A. Avgoustidis and I. Zavala, Warped Wilson line DBI inflation, JCAP 01 (2009) 045 [arXiv:0810.5001] [SPIRES].ADSGoogle Scholar
  49. [49]
    S. Renaux-Petel, Combined local and equilateral non-gaussianities from multifield DBI inflation, JCAP 10 (2009) 012 [arXiv:0907.2476] [SPIRES].Google Scholar
  50. [50]
    S. Mizuno, F. Arroja and K. Koyama, On the full trispectrum in multi-field DBI inflation, Phys. Rev. D 80 (2009) 083517 [arXiv:0907.2439] [SPIRES].Google Scholar
  51. [51]
    S. Mizuno, F. Arroja, K. Koyama and T. Tanaka, Lorentz boost and non-gaussianity in multi-field DBI-inflation, Phys. Rev. D 80 (2009) 023530 [arXiv:0905.4557] [SPIRES].ADSGoogle Scholar
  52. [52]
    F. Arroja, S. Mizuno, K. Koyama and T. Tanaka, On the full trispectrum in single field DBI-inflation, Phys. Rev. D 80 (2009) 043527 [arXiv:0905.3641] [SPIRES].ADSGoogle Scholar
  53. [53]
    G. Panotopoulos, Detectable primordial non-gaussianities and gravitational waves in k-inflation, Phys. Rev. D 76 (2007) 127302 [arXiv:0712.1713] [SPIRES].ADSGoogle Scholar
  54. [54]
    J. Smidt, A. Amblard, P. Serra and A. Cooray, A measurement of primordial non-gaussianity using WMAP 5-year temperature skewness power spectrum, Phys. Rev. D 80 (2009) 123005 [arXiv:0907.4051] [SPIRES].Google Scholar
  55. [55]
    M. Spalinski, Inflation in DBI models with constant gamma, JCAP 04 (2008) 002 [arXiv:0711.4326] [SPIRES].MathSciNetADSGoogle Scholar
  56. [56]
    M. Spalinski, A consistency relation for power law inflation in DBI models, Phys. Lett. B 650 (2007) 313 [hep-th/0703248] [SPIRES].ADSGoogle Scholar
  57. [57]
    M. Spalinski, On power law inflation in DBI models, JCAP 05 (2007) 017 [hep-th/0702196] [SPIRES].MathSciNetADSGoogle Scholar
  58. [58]
    M. Spalinski, On the slow roll expansion for brane inflation, JCAP 04 (2007) 018 [hep-th/0702118] [SPIRES].ADSGoogle Scholar
  59. [59]
    S.E. Shandera, Slow roll in brane inflation, JCAP 04 (2005) 011 [hep-th/0412077] [SPIRES].ADSGoogle Scholar
  60. [60]
    A. Ashoorioon, H. Firouzjahi and M.M. Sheikh-Jabbari, M-flation: inflation from matrix valued scalar fields, JCAP 06 (2009) 018 [arXiv:0903.1481] [SPIRES].ADSGoogle Scholar
  61. [61]
    J.L. Hewett, B. Lillie and T.G. Rizzo, Black holes in many dimensions at the LHC: testing critical string theory, Phys. Rev. Lett. 95 (2005) 261603 [hep-ph/0503178] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    L. McAllister and E. Silverstein, String cosmology: a review, Gen. Rel. Grav. 40 (2008) 565 [arXiv:0710.2951] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  63. [63]
    R. Flauger, L. McAllister, E. Pajer, A. Westphal and G. Xu, Oscillations in the CMB from axion monodromy inflation, arXiv:0907.2916 [SPIRES].
  64. [64]
    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  65. [65]
    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  66. [66]
    C. Papageorgakis, S. Ramgoolam and N. Toumbas, Noncommutative geometry, quantum effects and DBI-scaling in the collapse of D0-D2 bound states, JHEP 01 (2006) 030 [hep-th/0510144] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  67. [67]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  68. [68]
    G.W. Gibbons and S. Gielen, Deformed general relativity and torsion, Class. Quant. Grav. 26 (2009) 135005 [arXiv:0902.2001] [SPIRES].CrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Physics DepartmentSimon Fraser UniversityVancouverCanada
  2. 2.Astronomy Unit, School of Mathematical SciencesQueen Mary University of LondonLondonU.K.
  3. 3.Department of Physics and AstronomyUniversity of VictoriaVictoriaCanada

Personalised recommendations