BCFW recursion relation with nonzero boundary contribution

  • Bo Feng
  • Junqi Wang
  • Yihong Wang
  • Zhibai Zhang


The appearance of BCFW on-shell recursion relation has deepen our understanding of quantum field theory, especially the one with gauge boson and graviton. To be able to write the BCFW recursion relation, the knowledge of boundary contributions is needed. So far, most applications have been constrained to the cases where the boundary contribution is zero. In this paper, we show that for some theories, although there is no proper deformation to annihilate the boundary contribution, its effects can be analyzed in simple way, thus we do able to write down the BCFW recursion relation with boundary contributions. The examples we will present in this paper include the λφ4 theory and Yukawa coupling between fermions and scalars.


Duality in Gauge Field Theories Global Symmetries 


  1. [1]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  2. [2]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    R. Britto, F. Cachazo and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    P. Benincasa and F. Cachazo, Consistancy conditions on the S-matix of massless particles, arXiv:0705.4305 [SPIRES].
  5. [5]
    N. Arkani-Hamed and J. Kaplan, On tree amplitudes in gauge theory and gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].CrossRefMathSciNetGoogle Scholar
  6. [6]
    D. Vaman and Y.-P. Yao, QCD recursion relations from the largest time equation, JHEP 04 (2006) 030 [hep-th/0512031] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  7. [7]
    P.D. Draggiotis, R.H.P. Kleiss, A. Lazopoulos and C.G. Papadopoulos, Diagrammatic proof of the BCFW recursion relation for gluon amplitudes in QCD, Eur. Phys. J. C 46 (2006) 741 [hep-ph/0511288] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    P. Benincasa, C. Boucher-Veronneau and F. Cachazo, Taming tree amplitudes in general relativity, JHEP 11 (2007) 057 [hep-th/0702032] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, arXiv:0808.1446 [SPIRES].
  10. [10]
    C. Cheung, On-shell recursion relations for generic theories, arXiv:0808.0504 [SPIRES].
  11. [11]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [SPIRES].MathSciNetADSGoogle Scholar
  12. [12]
    Z. Bern, L.J. Dixon and D.A. Kosower, The last of the finite loop amplitudes in QCD, Phys. Rev. D 72 (2005) 125003 [hep-ph/0505055] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev. D 73 (2006) 065013 [hep-ph/0507005] [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    Z. Bern, N.E.J. Bjerrum-Bohr, D.C. Dunbar and H. Ita, Recursive calculation of one-loop QCD integral coefficients, JHEP 11 (2005) 027 [hep-ph/0507019] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, All one-loop maximally helicity violating gluonic amplitudes in QCD, Phys. Rev. D 75 (2007) 016006 [hep-ph/0607014] [SPIRES].ADSGoogle Scholar
  16. [16]
    C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev. D 74 (2006) 036009 [hep-ph/0604195] [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • Bo Feng
    • 1
  • Junqi Wang
    • 2
  • Yihong Wang
    • 2
  • Zhibai Zhang
    • 3
  1. 1.Center of Mathematical ScienceZhejiang UniversityHangzhouChina
  2. 2.Physics DepartmentZhejiang UniversityHangzhouChina
  3. 3.Mathematics DepartmentZhejiang UniversityHangzhouChina

Personalised recommendations