Probing CP violation with and without momentum reconstruction at the LHC

  • G. Moortgat-Pick
  • K. Rolbiecki
  • J. Tattersall
  • P. Wienemann


We study the potential to observe CP-violating effects in SUSY cascade decay chains at the LHC. We consider squark and gluino production followed by subsequent decays into neutralinos with a three-body leptonic decay in the final step. Asymmetries composed by triple products of momenta of the final state particles are sensitive to CP-violating effects. Due to large boosts these asymmetries can be difficult to observe at a hadron collider. We show that using all available kinematic information one can reconstruct the decay chains on an event-by-event basis even in the case of 3-body decays, neutrinos and LSPs in the final state. We also discuss the most important experimental effects like major backgrounds and momentum smearing due to finite detector resolution. We show that with 300 fb−1 of collected data, CP violation may be discovered at the LHC for a wide range of the phase of the bino mass parameter M 1.


Supersymmetry Phenomenology 


  1. [1]
    Y.A. Golfand and E.P. Likhtman, Extension of the algebra of Poincaré group generators and violation of p invariance, JETP Lett. 13 (1971) 323 [SPIRES].ADSGoogle Scholar
  2. [2]
    J. Wess and B. Zumino, A lagrangian model invariant under supergauge transformations, Phys. Lett. B 49 (1974) 52 [SPIRES].ADSGoogle Scholar
  3. [3]
    J. Wess and B. Zumino, Supergauge transformations in four-dimensions, Nucl. Phys. B 70 (1974) 39 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    O. Buchmueller et al., Predictions for supersymmetric particle masses in the CMSSM using indirect experimental and cosmological constraints, JHEP 09 (2008) 117 [arXiv:0808.4128] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    O. Buchmueller et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1, Eur. Phys. J. C 64 (2009) 391 [arXiv:0907.5568] [SPIRES].CrossRefGoogle Scholar
  6. [6]
    P. Bechtle, K. Desch, M. Uhlenbrock and P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC, arXiv:0907.2589 [SPIRES].
  7. [7]
    A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    M.B. Gavela, P. Hernández, J. Orloff, O. Pene and C. Quimbay, Standard model CP-violation and baryon asymmetry. Part 2: finite temperature, Nucl. Phys. B 430 (1994) 382 [hep-ph/9406289] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number non-conservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [hep-ph/9603208] [SPIRES].CrossRefGoogle Scholar
  10. [10]
    H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rept. 110 (1984) 1 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    H.E. Haber and G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rept. 117 (1985) 75 [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S.P. Martin, A supersymmetry primer, hep-ph/9709356 [SPIRES].
  13. [13]
    T. Ibrahim and P. Nath, CP violation from standard model to strings, Rev. Mod. Phys. 80 (2008) 577 [arXiv:0705.2008] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    J. Ellis, F. Moortgat, G. Moortgat-Pick, J.M. Smillie and J. Tattersall, Measurement of CP-violation in stop cascade decays at the LHC, Eur. Phys. J. C 60 (2009) 633 [arXiv:0809.1607] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    J.R. Ellis, J.S. Lee and A. Pilaftsis, Electric dipole moments in the MSSM reloaded, JHEP 10 (2008) 049 [arXiv:0808.1819] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    Y. Kizukuri and N. Oshimo, The neutron and electron electric dipole moments in supersymmetric theories, Phys. Rev. D 46 (1992) 3025 [SPIRES].ADSGoogle Scholar
  17. [17]
    T. Ibrahim and P. Nath, The neutron and the lepton EDMs in MSSM, large CP-violating phases and the cancellation mechanism, Phys. Rev. D 58 (1998) 111301 [hep-ph/9807501] [SPIRES].ADSGoogle Scholar
  18. [18]
    T. Ibrahim and P. Nath, Large CP phases and the cancellation mechanism in EDMs in SUSY, string and brane models, Phys. Rev. D 61 (2000) 093004 [hep-ph/9910553] [SPIRES].ADSGoogle Scholar
  19. [19]
    M. Brhlik, G.J. Good and G.L. Kane, Electric dipole moments do not require the CP-violating phases of supersymmetry to be small, Phys. Rev. D 59 (1999) 115004 [hep-ph/9810457] [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Abel, S. Khalil and O. Lebedev, EDM constraints in supersymmetric theories, Nucl. Phys. B 606 (2001) 151 [hep-ph/0103320] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    R.L. Arnowitt, B. Dutta and Y. Santoso, SUSY phases, the electron electric dipole moment and the muon magnetic moment, Phys. Rev. D 64 (2001) 113010 [hep-ph/0106089] [SPIRES].ADSGoogle Scholar
  22. [22]
    J.S. Lee et al., CPsuperH: a computational tool for Higgs phenomenology in the minimal supersymmetric standard model with explicit CP-violation, Comput. Phys. Commun. 156 (2004) 283 [hep-ph/0307377] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    J.S. Lee, M. Carena, J. Ellis, A. Pilaftsis and C.E.M. Wagner, CPsuperH2.0: an improved computational tool for Higgs phenomenology in the MSSM with explicit CP-violation, Comput. Phys. Commun. 180 (2009) 312 [arXiv:0712.2360] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    O. Kittel, SUSY CP phases and asymmetries at colliders, J. Phys. Conf. Ser. 171 (2009) 012094 [arXiv:0904.3241] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    S. Hesselbach, CP Violation in SUSY Particle Production and Decay, arXiv:0709.2679 [SPIRES].
  26. [26]
    S. Kraml, CP violation in SUSY, arXiv:0710.5117 [SPIRES].
  27. [27]
    P. Langacker, G. Paz, L.-T. Wang and I. Yavin, A T-odd observable sensitive to CP-violating phases in squark decay, JHEP 07 (2007) 055 [hep-ph/0702068] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    F. Deppisch and O. Kittel, Probing SUSY CP-violation in two-body stop decays at the LHC, JHEP 09 (2009) 110 [arXiv:0905.3088] [SPIRES].CrossRefGoogle Scholar
  29. [29]
    J.A. Aguilar-Saavedra, CP violation in selectron cascade decays \( {\tilde e_L} \to e\tilde \chi_1^0{\mu^{+} }{\mu^{-} } \), Phys. Lett. B 596 (2004) 247 [hep-ph/0403243] [SPIRES].ADSGoogle Scholar
  30. [30]
    J.A. Aguilar-Saavedra, Study of selectron properties in the \( \tilde e\tilde e \to {e^{-} }\tilde \chi_1^0{e^{-} }\tilde \chi_2^0 \) decay channel, hep-ph/0312140 [SPIRES].
  31. [31]
    S.Y. Choi, B.C. Chung, J. Kalinowski, Y.G. Kim and K. Rolbiecki, Analysis of the neutralino system in three-body leptonic decays of neutralinos, Eur. Phys. J. C 46 (2006) 511 [hep-ph/0504122] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    A. Bartl, H. Fraas, S. Hesselbach, K. Hohenwarter-Sodek and G.A. Moortgat-Pick, A T-odd asymmetry in neutralino production and decay, JHEP 08 (2004) 038 [hep-ph/0406190] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    D. Atwood, S. Bar-Shalom, G. Eilam and A. Soni, CP violation in top physics, Phys. Rept. 347 (2001) 1 [hep-ph/0006032] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    A. Bartl, T. Kernreiter and W. Porod, A CP sensitive asymmetry in the three-body decay stop 1 + τ-sneutrino, Phys. Lett. B 538 (2002) 59 [hep-ph/0202198] [SPIRES].ADSGoogle Scholar
  35. [35]
    A. Bartl, H. Fraas, T. Kernreiter and O. Kittel, T-odd correlations in the decay of scalar fermions, Eur. Phys. J. C 33 (2004) 433 [hep-ph/0306304] [SPIRES].ADSGoogle Scholar
  36. [36]
    A. Bartl et al., CP asymmetries in chargino production and decay: the three-body decay case, Eur. Phys. J. C 51 (2007) 149 [hep-ph/0608065] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    M.M. Nojiri, G. Polesello and D.R. Tovey, Proposal for a new reconstruction technique for SUSY processes at the LHC, hep-ph/0312317 [SPIRES].
  38. [38]
    M.M. Nojiri, G. Polesello and D.R. Tovey, A hybrid method for determining SUSY particle masses at the LHC with fully identified cascade decays, JHEP 05 (2008) 014 [arXiv:0712.2718] [SPIRES].CrossRefADSGoogle Scholar
  39. [39]
    H.-C. Cheng, D. Engelhardt, J.F. Gunion, Z. Han and B. McElrath, Accurate mass determinations in decay chains with missing energy, Phys. Rev. Lett. 100 (2008) 252001 [arXiv:0802.4290] [SPIRES].CrossRefADSGoogle Scholar
  40. [40]
    H.-C. Cheng, J.F. Gunion, Z. Han and B. McElrath, Accurate mass determinations in decay chains with missing energy: II, Phys. Rev. D 80 (2009) 035020 [arXiv:0905.1344] [SPIRES].Google Scholar
  41. [41]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].CrossRefADSGoogle Scholar
  42. [42]
    M. Bahr et al., HERWIG++ 2.2 release note, arXiv:0804.3053 [SPIRES].
  43. [43]
    G.A. Moortgat-Pick, H. Fraas, A. Bartl and W. Majerotto, Polarization and spin effects in neutralino production and decay, Eur. Phys. J. C 9 (1999) 521 [hep-ph/9903220] [SPIRES].ADSGoogle Scholar
  44. [44]
    H.E. Haber, Spin formalism and applications to new physics searches, hep-ph/9405376 [SPIRES].
  45. [45]
    H.-C. Cheng, J.F. Gunion, Z. Han, G. Marandella and B. McElrath, Mass determination in SUSY-like events with missing energy, JHEP 12 (2007) 076 [arXiv:0707.0030] [SPIRES].CrossRefADSGoogle Scholar
  46. [46]
    K. Kawagoe, M.M. Nojiri and G. Polesello, A new SUSY mass reconstruction method at the CERN LHC, Phys. Rev. D 71 (2005) 035008 [hep-ph/0410160] [SPIRES].ADSGoogle Scholar
  47. [47]
    ATLAS Collaboration, ATLAS detector and physics performance. Technical design report. Vol. 2, CERN-LHCC-99-15 [SPIRES].
  48. [48]
    P. Bechtle, B. Gosdzik, G. Moortgat-Pick, K. Rolbiecki, J. Tattersall and P. Wienemann, in preparation.Google Scholar
  49. [49]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Update of parton distributions at NNLO, Phys. Lett. B 652 (2007) 292 [arXiv:0706.0459] [SPIRES].ADSGoogle Scholar
  51. [51]
    LHC/LC Study Group collaboration, G. Weiglein et al., Physics interplay of the LHC and the ILC, Phys. Rept. 426 (2006) 47 [hep-ph/0410364] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    W.S. Cho, K. Choi, Y.G. Kim and C.B. Park, Gluino stransverse mass, Phys. Rev. Lett. 100 (2008) 171801 [arXiv:0709.0288] [SPIRES].CrossRefADSGoogle Scholar
  53. [53]
    N. Kersting, A simple mass reconstruction technique for SUSY particles at the LHC, Phys. Rev. D 79 (2009) 095018 [arXiv:0901.2765] [SPIRES].ADSGoogle Scholar
  54. [54]
    Z. Kang, N. Kersting, S. Kraml, A.R. Raklev and M.J. White, Neutralino reconstruction at the LHC from decay-frame kinematics, arXiv:0908.1550 [SPIRES].
  55. [55]
    K. Desch, J. Kalinowski, G. Moortgat-Pick, K. Rolbiecki and W.J. Stirling, Combined LHC/ILC analysis of a SUSY scenario with heavy sfermions, JHEP 12 (2006) 007 [hep-ph/0607104] [SPIRES].CrossRefADSGoogle Scholar
  56. [56]
    ATLAS collaboration, G. Aad et al., The ATLAS experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003 [SPIRES].Google Scholar
  57. [57]
    A. Bartl et al., CP-odd observables in neutralino production with transverse e + and e beam polarization, JHEP 01 (2006) 170 [hep-ph/0510029] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • G. Moortgat-Pick
    • 1
  • K. Rolbiecki
    • 1
  • J. Tattersall
    • 1
  • P. Wienemann
    • 2
  1. 1.IPPP, University of DurhamDurhamU.K.
  2. 2.Department of PhysicsUniversity of BonnBonnGermany

Personalised recommendations