MSSM baryogenesis and electric dipole moments: an update on the phenomenology

  • V. Cirigliano
  • Yingchuan Li
  • S. Profumo
  • M. J. Ramsey-Musolf
Open Access


We explore the implications of electroweak baryogenesis for future searches for permanent electric dipole moments in the context of the minimal supersymmetric extension of the Standard Model (MSSM). From a cosmological standpoint, we point out that regions of parameter space that over-produce relic lightest supersymmetric particles can be salvaged only by assuming a dilution of the particle relic density that makes it compatible with the dark matter density: this dilution must occur after dark matter freeze-out, which ordinarily takes place after electroweak baryogenesis, implying the same degree of dilution for the generated baryon number density as well. We expand on previous studies on the viable MSSM regions for baryogenesis, exploring for the first time an orthogonal slice of the relevant parameter space, namely the (tan β,m A ) plane, and the case of non-universal relative gaugino-higgsino CP violating phases. The main result of our study is that in all cases lower limits on the size of the electric dipole moments exist, and are typically on the same order, or above, the expected sensitivity of the next generation of experimental searches, implying that MSSM electroweak baryogenesis will be soon conclusively tested.


Supersymmetry Phenomenology 


  1. [1]
    Particle Data Group collaboration, W.M. Yao et al., Review of particle physics, J. Phys. G 33 (2006) 1 [SPIRES].ADSGoogle Scholar
  2. [2]
    WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: likelihoods and parameters from the WMAP data, Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    A.D. Sakharov, Violation of CP invariance, C asymmetry and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [JETP Lett. 5 (1967) 24] [Sov. Phys. Usp. 34 (1991) 392] [SPIRES].Google Scholar
  4. [4]
    LEP Working Group for Higgs boson searches collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].ADSGoogle Scholar
  5. [5]
    G.R. Farrar and M.E. Shaposhnikov, Baryon asymmetry of the universe in the standard electroweak theory, Phys. Rev. D 50 (1994) 774 [hep-ph/9305275] [SPIRES].ADSGoogle Scholar
  6. [6]
    A.I. Bochkarev and M.E. Shaposhnikov, Electroweak production of baryon asymmetry and upper bounds on the Higgs and top masses, Mod. Phys. Lett. A 2 (1987) 417 [SPIRES].ADSGoogle Scholar
  7. [7]
    H. Baer and X. Tata, Weak scale supersymmetry, Cambridge University Press, Cambridge U.K. (2006) [ISBN-10:0521857864] [ISBN-13:9780521857864] [SPIRES].Google Scholar
  8. [8]
    W.C. Griffith et al., Improved limit on the permanent electric dipole moment of 199 Hg, Phys. Rev. Lett. 102 (2009) 101601 [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The effective theory of the light stop scenario, JHEP 10 (2008) 062 [arXiv:0806.4297] [SPIRES].CrossRefADSGoogle Scholar
  10. [10]
    Y. Li, S. Profumo and M. Ramsey-Musolf, Higgs-higgsino-gaugino induced two loop electric dipole moments, Phys. Rev. D 78 (2008) 075009 [arXiv:0806.2693] [SPIRES].ADSGoogle Scholar
  11. [11]
    Y. Li, S. Profumo and M. Ramsey-Musolf, Bino-driven electroweak baryogenesis with highly suppressed electric dipole moments, Phys. Lett. B 673 (2009) 95 [arXiv:0811.1987] [SPIRES].ADSGoogle Scholar
  12. [12]
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Supergauge interactions and electroweak baryogenesis, arXiv:0908.2187 [SPIRES].
  13. [13]
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Lepton-mediated electroweak baryogenesis, arXiv:0905.4509 [SPIRES].
  14. [14]
    M. Carena, G. Nardini, M. Quirós and C.E.M. Wagner, The baryogenesis window in the MSSM, Nucl. Phys. B 812 (2009) 243 [arXiv:0809.3760] [SPIRES].CrossRefADSGoogle Scholar
  15. [15]
    C. Lee, V. Cirigliano and M.J. Ramsey-Musolf, Resonant relaxation in electroweak baryogenesis, Phys. Rev. D 71 (2005) 075010 [hep-ph/0412354] [SPIRES].ADSGoogle Scholar
  16. [16]
    V. Cirigliano, M.J. Ramsey-Musolf, S. Tulin and C. Lee, Yukawa and tri-scalar processes in electroweak baryogenesis, Phys. Rev. D 73 (2006) 115009 [hep-ph/0603058] [SPIRES].ADSGoogle Scholar
  17. [17]
    D.J.H. Chung, B. Garbrecht, M.J. Ramsey-Musolf and S. Tulin, Yukawa interactions and supersymmetric electroweak baryogenesis, Phys. Rev. Lett. 102 (2009) 061301 [arXiv:0808.1144] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    M.S. Carena, M. Quirós, M. Seco and C.E.M. Wagner, Improved results in supersymmetric electroweak baryogenesis, Nucl. Phys. B 650 (2003) 24 [hep-ph/0208043] [SPIRES].CrossRefADSGoogle Scholar
  19. [19]
    T. Konstandin, T. Prokopec and M.G. Schmidt, Kinetic description of fermion flavor mixing and CP-violating sources for baryogenesis, Nucl. Phys. B 716 (2005) 373 [hep-ph/0410135] [SPIRES].CrossRefADSGoogle Scholar
  20. [20]
    T. Konstandin, T. Prokopec and M.G. Schmidt, Axial currents from CKM matrix CP-violation and electroweak baryogenesis, Nucl. Phys. B 679 (2004) 246 [hep-ph/0309291] [SPIRES].CrossRefADSGoogle Scholar
  21. [21]
    J.M. Moreno, M. Quirós and M. Seco, Bubbles in the supersymmetric standard model, Nucl. Phys. B 526 (1998) 489 [hep-ph/9801272] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    M. Pietroni, The electroweak phase transition in a nonminimal supersymmetric model, Nucl. Phys. B 402 (1993) 27 [hep-ph/9207227] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    R. Fok and G.D. Kribs, Four generations, the electroweak phase transition and supersymmetry, Phys. Rev. D 78 (2008) 075023 [arXiv:0803.4207] [SPIRES].ADSGoogle Scholar
  25. [25]
    J. Shu, T.M.P. Tait and C.E.M. Wagner, Baryogenesis from an earlier phase transition, Phys. Rev. D 75 (2007) 063510 [hep-ph/0610375] [SPIRES].ADSGoogle Scholar
  26. [26]
    H. Patel and M.J. Ramsey-Musolf, in preparation.Google Scholar
  27. [27]
    P. Fileviez Perez, T. Han, G.-Y. Huang, T. Li and K. Wang, Neutrino masses and the LHC: testing type II seesaw, Phys. Rev. D 78 (2008) 015018 [arXiv:0805.3536] [SPIRES].ADSGoogle Scholar
  28. [28]
    J. Kehayias and S. Profumo, Semi-analytic calculation of the gravitational wave signal from the electroweak phase transition for general quartic scalar effective potentials, arXiv:0911.0687 [SPIRES].
  29. [29]
    D.H. Lyth and E.D. Stewart, Thermal inflation and the moduli problem, Phys. Rev. D 53 (1996) 1784 [hep-ph/9510204] [SPIRES].ADSGoogle Scholar
  30. [30]
    L. Knox and M.S. Turner, Inflation at the electroweak scale, Phys. Rev. Lett. 70 (1993) 371 [astro-ph/9209006] [SPIRES].CrossRefADSGoogle Scholar
  31. [31]
    G. Nardini, M. Quirós and A. Wulzer, A confining strong first-order electroweak phase transition, JHEP 09 (2007) 077 [arXiv:0706.3388] [SPIRES].CrossRefADSGoogle Scholar
  32. [32]
    M. Pospelov, Particle physics catalysis of thermal big bang nucleosynthesis, Phys. Rev. Lett. 98 (2007) 231301 [hep-ph/0605215] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    V. Cirigliano, S. Profumo and M.J. Ramsey-Musolf, Baryogenesis, electric dipole moments and dark matter in the MSSM, JHEP 07 (2006) 002 [hep-ph/0603246] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    C. Wainwright and S. Profumo, The impact of a strongly first-order phase transition on the abundance of thermal relics, Phys. Rev. D 80 (2009) 103517 [arXiv:0909.1317] [SPIRES].Google Scholar
  35. [35]
    D. Eriksson, F. Mahmoudi and O. Stal, Charged Higgs bosons in minimal supersymmetry: updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    M. Antonelli et al., Flavor physics in the quark sector, arXiv:0907.5386 [SPIRES].

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • V. Cirigliano
    • 1
  • Yingchuan Li
    • 2
  • S. Profumo
    • 3
  • M. J. Ramsey-Musolf
    • 2
    • 4
  1. 1.Theoretical DivisionLos Alamos National LaboratoryLos AlamosU.S.A.
  2. 2.Department of PhysicsUniversity of WisconsinMadisonU.S.A.
  3. 3.Department of Physics and Santa Cruz Institute for Particle PhysicsUniversity of CaliforniaSanta CruzU.S.A.
  4. 4.Kellogg Radiation LaboratoryCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations