Skip to main content
Log in

Light top partners for a light composite Higgs

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Anomalously light fermionic partners of the top quark often appear in explicit constructions, such as the 5d holographic models, where the Higgs is a light composite pseudo Nambu-Goldstone boson and its potential is generated radiatively by top quark loops. We show that this is due to a structural correlation among the mass of the partners and the one of the Higgs boson. Because of this correlation, the presence of light partners could be essential to obtain a realistic Higgs mass.

We quantitatively confirm this generic prediction, which applies to a broad class of composite Higgs models, by studying the simplest calculable framework with a composite Higgs, the Discrete Composite Higgs Model. In this setup we show analytically that the requirement of a light enough Higgs strongly constraints the fermionic spectrum and makes the light partners appear.

The light top partners thus provide the most promising manifestation of the composite Higgs scenario at the LHC. Conversely, the lack of observation of these states can put strong restrictions on the parameter space of the model. A simple analysis of the 7-TeV LHC searches presently available already gives some non-trivial constraint. The strongest bound comes from the exclusion of the 5/3-charged partner. Even if no dedicated LHC search exists for this particle, a bound of 611 GeV is derived by adapting the CMS search of bottom-like states in same-sign dileptons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ATLAS collaboration, Combined search for the standard model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  3. S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys. B 199 (1982)206 [INSPIRE].

    Article  ADS  Google Scholar 

  4. D.B. Kaplan and H. Georgi, SU(2) × U(1) breaking by vacuum misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].

    ADS  Google Scholar 

  5. D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].

    ADS  Google Scholar 

  6. H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett. B 143 (1984) 152 [INSPIRE].

    ADS  Google Scholar 

  7. T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys. B 243 (1984) 125 [INSPIRE].

    ADS  Google Scholar 

  8. H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984) 216 [INSPIRE].

    ADS  Google Scholar 

  9. M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a composite Higgs model, Nucl. Phys. B 254 (1985) 299 [INSPIRE].

    Article  ADS  Google Scholar 

  10. K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B 719 (2005) 165 [hep-ph/0412089] [INSPIRE].

    Article  ADS  Google Scholar 

  11. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  12. R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].

    Article  ADS  Google Scholar 

  13. G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Panico and A. Wulzer, The discrete composite Higgs model, JHEP 09 (2011) 135 [arXiv:1106.2719] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev. D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].

    ADS  Google Scholar 

  16. R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].

    Article  ADS  Google Scholar 

  17. Y. Hosotani and M. Mabe, Higgs boson mass and electroweak-gravity hierarchy from dynamical gauge-Higgs unification in the warped spacetime, Phys. Lett. B 615 (2005) 257 [hep-ph/0503020] [INSPIRE].

    ADS  Google Scholar 

  18. Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-Higgs unification and quark-lepton phenomenology in the warped spacetime, Phys. Rev. D 73 (2006) 096006 [hep-ph/0601241] [INSPIRE].

    ADS  Google Scholar 

  19. M.S. Carena, E. Ponton, J. Santiago and C.E. Wagner, Light Kaluza Klein states in Randall-Sundrum models with custodial SU(2), Nucl. Phys. B 759 (2006) 202 [hep-ph/0607106] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M.S. Carena, E. Ponton, J. Santiago and C. Wagner, Electroweak constraints on warped models with custodial symmetry, Phys. Rev. D 76 (2007) 035006 [hep-ph/0701055] [INSPIRE].

    ADS  Google Scholar 

  21. A.D. Medina, N.R. Shah and C.E.M. Wagner, Gauge-Higgs unification and radiative electroweak symmetry breaking in warped extra dimensions, Phys. Rev. D 76 (2007) 095010 [arXiv:0706.1281] [INSPIRE].

    ADS  Google Scholar 

  22. L.J. Hall, Y. Nomura and D. Tucker-Smith, Gauge Higgs unification in higher dimensions, Nucl. Phys. B 639 (2002) 307 [hep-ph/0107331] [INSPIRE].

    Article  ADS  Google Scholar 

  23. M. Kubo, C. Lim and H. Yamashita, The Hosotani mechanism in bulk gauge theories with an orbifold extra space S 1/Z 2, Mod. Phys. Lett. A 17 (2002) 2249 [hep-ph/0111327] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. G. Burdman and Y. Nomura, Unification of Higgs and gauge fields in five-dimensions, Nucl. Phys. B 656 (2003) 3 [hep-ph/0210257] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. N. Haba, M. Harada, Y. Hosotani and Y. Kawamura, Dynamical rearrangement of gauge symmetry on the orbifold S 1/Z 2, Nucl. Phys. B 657 (2003) 169 [Erratum ibid. B 669 (2003) 381-382] [hep-ph/0212035] [INSPIRE].

  26. I. Gogoladze, Y. Mimura and S. Nandi, Gauge Higgs unification on the left right model, Phys. Lett. B 560 (2003) 204 [hep-ph/0301014] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. I. Gogoladze, Y. Mimura and S. Nandi, Model building with gauge-Yukawa unification, Phys. Rev. D 69 (2004) 075006 [hep-ph/0311127] [INSPIRE].

    ADS  Google Scholar 

  28. C.A. Scrucca, M. Serone and L. Silvestrini, Electroweak symmetry breaking and fermion masses from extra dimensions, Nucl. Phys. B 669 (2003) 128 [hep-ph/0304220] [INSPIRE].

    Article  ADS  Google Scholar 

  29. G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking, JHEP 03 (2006) 099 [hep-ph/0510366] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Panico, M. Serone and A. Wulzer, A model of electroweak symmetry breaking from a fifth dimension, Nucl. Phys. B 739 (2006) 186 [hep-ph/0510373] [INSPIRE].

    Article  ADS  Google Scholar 

  31. M. Sakamoto and K. Takenaga, Large gauge hierarchy in gauge-Higgs unification, Phys. Rev. D 75 (2007) 045015 [hep-th/0609067] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. C. Lim and N. Maru, Towards a realistic grand gauge-Higgs unification, Phys. Lett. B 653 (2007) 320 [arXiv:0706.1397] [INSPIRE].

    ADS  Google Scholar 

  33. G. Panico, M. Safari and M. Serone, Simple and realistic composite Higgs models in flat extra dimensions, JHEP 02 (2011) 103 [arXiv:1012.2875] [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Panico, M. Serone and A. Wulzer, Electroweak symmetry breaking and precision tests with a fifth dimension, Nucl. Phys. B 762 (2007) 189 [hep-ph/0605292] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. Panico, E. Ponton, J. Santiago and M. Serone, Dark Matter and electroweak symmetry breaking in models with warped extra dimensions, Phys. Rev. D 77 (2008) 115012 [arXiv:0801.1645] [INSPIRE].

    ADS  Google Scholar 

  36. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  37. R. Contino and G. Servant, Discovering the top partners at the LHC using same-sign dilepton final states, JHEP 06 (2008) 026 [arXiv:0801.1679] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J. Aguilar-Saavedra, Identifying top partners at LHC, JHEP 11 (2009) 030 [arXiv:0907.3155] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J. Mrazek and A. Wulzer, A strong sector at the LHC: top partners in same-sign dileptons, Phys. Rev. D 81 (2010) 075006 [arXiv:0909.3977] [INSPIRE].

    ADS  Google Scholar 

  40. G. Dissertori, E. Furlan, F. Moortgat and P. Nef, Discovery potential of top-partners in a realistic composite Higgs model with early LHC data, JHEP 09 (2010) 019 [arXiv:1005.4414] [INSPIRE].

    Article  ADS  Google Scholar 

  41. N. Arkani-Hamed, A.G. Cohen and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757 [hep-th/0104005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. C.T. Hill, S. Pokorski and J. Wang, Gauge invariant effective Lagrangian for Kaluza-Klein modes, Phys. Rev. D 64 (2001) 105005 [hep-th/0104035] [INSPIRE].

    ADS  Google Scholar 

  43. S. De Curtis, M. Redi and A. Tesi, The 4D composite Higgs, JHEP 04 (2012) 042 [arXiv:1110.1613] [INSPIRE].

    Article  Google Scholar 

  44. H.-C. Cheng, J. Thaler and L.-T. Wang, Little M-theory, JHEP 09 (2006) 003 [hep-ph/0607205] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. R. Foadi, J.T. Laverty, C.R. Schmidt and J.-H. Yu, Radiative electroweak symmetry breaking in a little Higgs model, JHEP 06 (2010) 026 [arXiv:1001.0584] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M. Baumgart, The advantages of four dimensions for composite Higgs models, arXiv:0706.1380 [INSPIRE].

  47. CMS collaboration, Search for heavy bottom-like quarks in 4.9 inverse femtobarns of pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 05 (2012) 123 [arXiv:1204.1088] [INSPIRE].

    ADS  Google Scholar 

  48. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal conformal technicolor and precision electroweak tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].

    Google Scholar 

  50. S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 1, Phys. Rev. 177 (1969) 2239 [INSPIRE].

    Article  ADS  Google Scholar 

  51. C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological lagrangians. 2, Phys. Rev. 177 (1969) 2247 [INSPIRE].

    Article  ADS  Google Scholar 

  52. J. Mrazek et al., The other natural two Higgs doublet model, Nucl. Phys. B 853 (2011) 1 [arXiv:1105.5403] [INSPIRE].

    Article  ADS  Google Scholar 

  53. G. Panico and A. Wulzer, Effective action and holography in 5D gauge theories, JHEP 05 (2007) 060 [hep-th/0703287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs search at the LHC, JHEP 05 (2010) 065 [arXiv:1003.3251] [INSPIRE].

    Article  ADS  Google Scholar 

  55. J. Espinosa, C. Grojean and M. Muhlleitner, Composite Higgs under LHC experimental scrutiny, EPJ Web Conf. 28 (2012) 08004 [arXiv:1202.1286] [INSPIRE].

    Article  Google Scholar 

  56. A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [arXiv:1202.3415] [INSPIRE].

    Article  ADS  Google Scholar 

  57. CDF collaboration, T. Aaltonen et al., Search for new bottomlike quark pair decays \( Q\overline{Q}\to \left( {t{W^{\pm }}} \right)\left( {\overline{t}{W^{\pm }}} \right) \) in same-charge dilepton events, Phys. Rev. Lett. 104 (2010) 091801 [arXiv:0912.1057] [INSPIRE].

    Article  ADS  Google Scholar 

  58. ATLAS collaboration, Search for same-sign top-quark production and fourth-generation down-type quarks in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 04 (2012) 069 [arXiv:1202.5520] [INSPIRE].

    ADS  Google Scholar 

  59. ATLAS collaboration, Search for down-type fourth generation quarks with the ATLAS detector in events with one lepton and hadronically decaying W bosons, Phys. Rev. Lett. 109 (2012) 032001 [arXiv:1202.6540] [INSPIRE].

    Article  ADS  Google Scholar 

  60. CMS collaboration, Search for a vector-like quark with charge 2/3 in t + Z events from pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 107 (2011) 271802 [arXiv:1109.4985] [INSPIRE].

    Article  Google Scholar 

  61. CMS collaboration, Search for t pair production in lepton+jets channel, CMS-PAS-EXO-11-099 (2011).

  62. CMS collaboration, Search for a heavy top-like quark in the dilepton final state in pp collisions at 7 TeV, CMS-PAS-EXO-11-050 (2011).

  63. ATLAS collaboration, Search for pair production of a heavy up-type quark decaying to a W boson and a b quark in the lepton+jets channel with the ATLAS detector, Phys. Rev. Lett. 108 (2012) 261802 [arXiv:1202.3076] [INSPIRE].

    Article  ADS  Google Scholar 

  64. D. Marzocca and M. Serone, The impact of a light Higgs on general composite Higgs models, work in progress.

  65. M. Redi and A. Tesi, Implications of a light Higgs in composite models, work in progress.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Wulzer.

Additional information

ArXiv ePrint: 1204.6333

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsedonskyi, O., Panico, G. & Wulzer, A. Light top partners for a light composite Higgs. J. High Energ. Phys. 2013, 164 (2013). https://doi.org/10.1007/JHEP01(2013)164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)164

Keywords

Navigation