Skip to main content
Log in

Gauge invariant computable quantities in timelike Liouville theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Timelike Liouville theory admits the sphere \({{\mathbb{S}}^2}\) as a real saddle point, about which quantum fluctuations can occur. An issue occurs when computing the expectation values of specific types of quantities, like the distance between points. The problem being that the gauge redundancy of the path integral over metrics is not completely fixed even after fixing to conformal gauge by imposing \({g_{{\mu \nu }}}={e^{{2\widehat{b}\phi }}}{{\widetilde{g}}_{{\mu \nu }}}\), where ϕ is the Liouville field and \({{\widetilde{g}}_{{\mu \nu }}}\) is a reference metric. The physical metric \({g_{{\mu \nu }}}\), and therefore the path integral over metrics still possesses a gauge redundancy due to invariance under SL 2(\(\mathbb{C}\)) coordinate transformations of the reference coordinates. This zero mode of the action must be dealt with before a perturbative analysis can be made.

This paper shows that after fixing to conformal gauge, the remaining zero mode of the linearized Liouville action due to SL 2(\(\mathbb{C}\)) coordinate transformations can be dealt with by using standard Fadeev-Popov methods. Employing the gauge condition that the “dipole” of the reference coordinate system is a fixed vector, and then integrating over all values of this dipole vector. The “dipole” vector referring to how coordinate area is concentrated about the sphere; assuming the sphere is embedded in \({{\mathbb{R}}^3}\) and centered at the origin, and the coordinate area is thought of as a charge density on the sphere. The vector points along the ray from the origin of \({{\mathbb{R}}^3}\) to the direction of greatest coordinate area.

A Green’s function is obtained and used to compute the expectation value of the geodesic length between two points on the \({{\mathbb{S}}^2}\) to second order in the Timelike Liouville coupling \(\widehat{b}\). This quantity doesn’t suffer from any power law or logarithmic divergences as a na¨ıve power counting argument might suggest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981) 207 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. L. Susskind, The census takers hat, arXiv:0710.1129 [INSPIRE].

  4. Y. Sekino and L. Susskind, Census taking in the hat: FRW/CFT duality, Phys. Rev. D 80 (2009) 083531 [arXiv:0908.3844] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  5. D. Harlow and L. Susskind, Crunches, hats and a conjecture, arXiv:1012.5302 [INSPIRE].

  6. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. H. Dorn and H. Otto, Two and three point functions in Liouville theory, Nucl. Phys. B 429 (1994) 375 [hep-th/9403141] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Ambjørn and Y. Watabiki, Scaling in quantum gravity, Nucl. Phys. B 445 (1995) 129 [hep-th/9501049] [INSPIRE].

    ADS  Google Scholar 

  9. J. Ambjørn, J. Barkley and T. Budd, Roaming moduli space using dynamical triangulations, Nucl. Phys. B 858 (2012) 267 [arXiv:1110.4649] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J. Ambjørn and T.G. Budd, Semi-classical dynamical triangulations, Phys. Lett. B 718 (2012) 200 [arXiv:1209.6031] [INSPIRE].

    ADS  Google Scholar 

  11. E. D’Hoker, D.Z. Freedman and R. Jackiw, SO(2, 1) invariant quantization of the Liouville theory, Phys. Rev. D 28 (1983) 2583 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. E. D’Hoker and R. Jackiw, Space translation breaking and compactification in the Liouville theory, Phys. Rev. Lett. 50 (1983) 1719 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Harlow, J. Maltz and E. Witten, Analytic continuation of Liouville theory, JHEP 12 (2011) 071 [arXiv:1108.4417] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A.B. Zamolodchikov, Three-point function in the minimal Liouville gravity, Theor. Math. Phys. 142 (2005) 183 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  15. P.H. Ginsparg and G.W. Moore, Lectures on 2D gravity and 2D string theory, hep-th/9304011 [INSPIRE].

  16. Y. Nakayama, Liouville field theory: a decade after the revolution, Int. J. Mod. Phys. A 19 (2004) 2771 [hep-th/0402009] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  17. J. Teschner, Liouville theory revisited, Class. Quant. Grav. 18 (2001) R153 [hep-th/0104158] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. E. D’Hoker and R. Jackiw, Classical and quantal Liouville field theory, Phys. Rev. D 26 (1982) 3517 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. A.B. Zamolodchikov and A.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B 477 (1996) 577 [hep-th/9506136] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. N. Seiberg, Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl. 102 (1990) 319 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. F. David, Conformal field theories coupled to 2D gravity in the conformal gauge, Mod. Phys. Lett. A 3 (1988) 1651 [INSPIRE].

    ADS  Google Scholar 

  22. A.B. Zamolodchikov, On the three-point function in minimal Liouville gravity, hep-th/0505063 [INSPIRE].

  23. E. Witten, Analytic continuation of Chern-Simons theory, arXiv:1001.2933 [INSPIRE].

  24. C.M. Bender and S.A. Orszag, Advanced mathematical methods for scientists and engineers, Springer, U.S.A. (1978).

    MATH  Google Scholar 

  25. L. Faddeev and V. Popov, Feynman diagrams for the yang-mills field, Phys. Lett. B 25 (1967) 29 [INSPIRE].

    ADS  Google Scholar 

  26. L. Faddeev, Feynman integral for singular Lagrangians, Theor. Math. Phys. 1 (1969) 1 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  27. G.C. Wick, The evaluation of the collision matrix, Phys. Rev. 80 (1950) 268 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. V.N. Gribov, Quantization of non-Abelian gauge theories, Nucl. Phys. B 139 (1978) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Maltz.

Additional information

ArXiv ePrint: 1210.2398

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltz, J. Gauge invariant computable quantities in timelike Liouville theory. J. High Energ. Phys. 2013, 151 (2013). https://doi.org/10.1007/JHEP01(2013)151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)151

Keywords

Navigation