Skip to main content
Log in

Abstract

We study the theoretical and phenomenological consequences of modifying the Kähler potential of the MSSM two Higgs doublet sector. Such modifications naturally arise when the Higgs sector mixes with a quasi-hidden conformal sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling dimension 1 < Δ < 2. The Kähler metric is singular at the origin of field space due to the presence of quasi-hidden sector states which get their mass from the Higgs vevs. The presence of these extra states leads to the fact that even as Δ → 1, the DSSM does not reduce to the MSSM. In particular, the Higgs can naturally be heavier than the W - and Z-bosons. Perturbative gauge coupling unification, a large top quark Yukawa, and consistency with precision electroweak can all be maintained for Δ close to unity. Moreover, such values of Δ can naturally be obtained in string-motivated constructions. The quasi-hidden sector generically contains states charged under SU(5)GUT as well as gauge singlets, leading to a rich, albeit model-dependent, collider phenomenology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J.J. Heckman and C. Vafa, An exceptional sector for F-theory GUTs, Phys. Rev. D 83 (2011) 026006 [arXiv:1006.5459] [INSPIRE].

    ADS  Google Scholar 

  2. J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from brane monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. J.J. Heckman and S.-J. Rey, Baryon and dark matter genesis from strongly coupled strings, JHEP 06 (2011) 120 [arXiv:1102.5346] [INSPIRE].

    Article  ADS  Google Scholar 

  5. J.J. Heckman, C. Vafa and B. Wecht, The conformal sector of F-theory GUTs, JHEP 07 (2011) 075 [arXiv:1103.3287] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. D. Stancato and J. Terning, The unhiggs, JHEP 11 (2009) 101 [arXiv:0807.3961] [INSPIRE].

    Article  ADS  Google Scholar 

  7. A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor, arXiv:1106.3346 [INSPIRE].

  8. A. Azatov, J. Galloway and M.A. Luty, Superconformal technicolor: models and phenomenology, arXiv:1106.4815 [INSPIRE].

  9. T. Gherghetta and A. Pomarol, A distorted MSSM Higgs sector from low-scale strong dynamics, JHEP 12 (2011) 069 [arXiv:1107.4697] [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Poland and D. Simmons-Duffin, Bounds on 4D conformal and superconformal field theories, JHEP 05 (2011) 017 [arXiv:1009.2087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. A. Fitzpatrick and D. Shih, Anomalous dimensions of non-chiral operators from AdS/CFT, JHEP 10 (2011) 113 [arXiv:1104.5013] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M.A. Luty, J. Terning and A.K. Grant, Electroweak symmetry breaking by strong supersymmetric dynamics at the TeV scale, Phys. Rev. D 63 (2001) 075001 [hep-ph/0006224] [INSPIRE].

    ADS  Google Scholar 

  14. R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].

    ADS  Google Scholar 

  15. D. Stancato and J. Terning, Constraints on the unhiggs model from top quark decay, Phys. Rev. D 81 (2010) 115012 [arXiv:1002.1694] [INSPIRE].

    ADS  Google Scholar 

  16. H. Fukushima, R. Kitano and M. Yamaguchi, Super-Topcolor, JHEP 01 (2011) 111 [arXiv:1012.5394] [INSPIRE].

    Article  ADS  Google Scholar 

  17. N. Craig, D. Stolarski and J. Thaler, A fat Higgs with a magnetic personality, arXiv:1106.2164 [INSPIRE].

  18. I. Donkin and A. Hebecker, Precision gauge unification from extra Yukawa couplings, JHEP 09 (2010) 044 [arXiv:1007.3990] [INSPIRE].

    Article  ADS  Google Scholar 

  19. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 DOI:dx.doi.org [hep-ph/0604261] [INSPIRE].

    ADS  Google Scholar 

  20. M.J. Strassler, Why unparticle models with mass gaps are examples of hidden valleys, arXiv:0801.0629 [INSPIRE].

  21. G. Cacciapaglia, G. Marandella and J. Terning, Colored unparticles, JHEP 01 (2008) 070 [arXiv:0708.0005] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G. Cacciapaglia, G. Marandella and J. Terning, The AdS/CFT/unparticle correspondence, JHEP 02 (2009) 049 [arXiv:0804.0424] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. H. Cai, H.-C. Cheng, A.D. Medina and J. Terning, Continuum superpartners from supersymmetric unparticles, Phys. Rev. D 80 (2009) 115009 [arXiv:0910.3925] [INSPIRE].

    ADS  Google Scholar 

  24. H. Cai, H.-C. Cheng, A.D. Medina and J. Terning, SUSY hidden in the continuum, arXiv:1108.3574 [INSPIRE].

  25. I. Buchbinder, S. Kuzenko and Z. Yarevskaya, Supersymmetric effective potential: superfield approach, Nucl. Phys. B 411 (1994) 665 [INSPIRE].

    Article  ADS  Google Scholar 

  26. M.T. Grisaru, M. Roček and R. von Unge, Effective Kähler potentials, Phys. Lett. B 383 (1996) 415 [hep-th/9605149] [INSPIRE].

    ADS  Google Scholar 

  27. D. Gaiotto, A. Neitzke and Y. Tachikawa, Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys. 294 (2010) 389 [arXiv:0810.4541] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. P. Kobak and A. Swann, The HyperKähler geometry associated to wolf spaces, math.DG/0001025.

  29. S.R. Coleman and E.J. Weinberg, Radiative corrections as the origin of spontaneous symmetry breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

    ADS  Google Scholar 

  30. M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett. 65 (1990) 964 [INSPIRE].

    Article  ADS  Google Scholar 

  31. J.D. Wells, TASI lecture notes: Introduction to precision electroweak analysis, hep-ph/0512342 [INSPIRE].

  32. B.W. Lee, C. Quigg and H. Thacker, Weak interactions at very high-energies: the role of the Higgs boson mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].

    ADS  Google Scholar 

  33. Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  34. S.P. Martin, A supersymmetry primer, hep-ph/9709356 [INSPIRE].

  35. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: the CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].

    ADS  Google Scholar 

  36. G. Funk, D. O’Neil and R. Winters, What the oblique parameters S, T and U and their extensions reveal about the 2HDM: a numerical analysis, arXiv:1110.3812 [INSPIRE].

  37. H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [INSPIRE].

    ADS  Google Scholar 

  38. G.D. Kribs, T. Plehn, M. Spannowsky and T.M. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [INSPIRE].

    ADS  Google Scholar 

  39. M.J. Dugan and L. Randall, The sign of S from electroweak radiative corrections, Phys. Lett. B 264 (1991) 154 [INSPIRE].

    ADS  Google Scholar 

  40. E. Gates and J. Terning, Negative contributions to S from Majorana particles, Phys. Rev. Lett. 67 (1991) 1840 [INSPIRE].

    Article  ADS  Google Scholar 

  41. H. Georgi, Unparticle physics, Phys. Rev. Lett. 98 (2007) 221601 [hep-ph/0703260] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of hidden valleys at hadron colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [INSPIRE].

    Article  ADS  Google Scholar 

  43. CMS collaboration, S. Chatrchyan et al., Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS, Phys. Lett. B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].

    ADS  Google Scholar 

  44. J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A phenomenological profile of the Higgs boson, Nucl. Phys. B 106 (1976) 292 [INSPIRE].

    ADS  Google Scholar 

  45. M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-energy theorems for Higgs boson couplings to photons, Sov. J. Nucl. Phys. 30 (1979) 711 [INSPIRE].

    Google Scholar 

  46. A. Djouadi, Squark effects on Higgs boson production and decay at the LHC, Phys. Lett. B 435 (1998) 101 [hep-ph/9806315] [INSPIRE].

    ADS  Google Scholar 

  47. R. Dermisek and I. Low, Probing the stop sector and the sanity of the MSSM with the Higgs boson at the LHC, Phys. Rev. D 77 (2008) 035012 [hep-ph/0701235] [INSPIRE].

    ADS  Google Scholar 

  48. G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, arXiv:1106.0034 [INSPIRE].

  49. J.A. Minahan and D. Nemeschansky, An N = 2 superconformal fixed point with E6 global symmetry, Nucl. Phys. B 482 (1996) 142 [hep-th/9608047] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. J.A. Minahan and D. Nemeschansky, Superconformal fixed points with En global symmetry, Nucl. Phys. B 489 (1997) 24 [hep-th/9610076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys. B 667 (2003) 183 [hep-th/0304128] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Bagger and E. Witten, The gauge invariant supersymmetric nonlinear σ-model, Phys. Lett. B 118 (1982) 103 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. C. Hull, A. Karlhede, U. Lindström and M. Roček, Nonlinear σ-models and their gauging in and out of superspace, Nucl. Phys. B 266 (1986) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  54. J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan J. Heckman.

Additional information

ArXiv ePrint: 1108.3849

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heckman, J.J., Kumar, P., Vafa, C. et al. Electroweak symmetry breaking in the DSSM. J. High Energ. Phys. 2012, 156 (2012). https://doi.org/10.1007/JHEP01(2012)156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)156

Keywords

Navigation