Skip to main content
Log in

Measuring the bottom-quark forward-central asymmetry at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Measurements of the top quark forward-backward asymmetry performed at the Tevatron suggest that new-physics may be playing a role in tt production. To better understand the source of the asymmetry, recent proposals have called for a measurement of the bottom and charm forward-backward asymmetries at the Tevatron, using jets with embedded muons. Here we propose a corresponding measurement of the bottom quark forward-central asymmetry designed to look for similar effects in the b-sector at ATLAS and CMS. We construct a set of cuts designed to enhance sensitivity to this asymmetry, and test our analysis on a toy axigluon model representative of those used to explain the top asymmetry. We find that if the relevant new-physics couplings to the bottom quark are similar to those of the top, then the effects should be visible at the 2σ level in less than 10 fb−1 of 7 TeV LHC data. Such a measurement would be of general importance, and would provide valuable model-building input, serving to restrict the set of models put forward to explain the Tevatron tt anomaly. However, a relatively low trigger threshold on non-isolated muons inside hard jets must be maintained to allow for this measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Measurement of the Forward Backward Asymmetry in Top Pair Production in the Dilepton Decay Channel using 5.1 fb −1, CDF note 103098 http://www-cdf.fnal.gov/physics/new/top/2011/DilAfb/.

  2. CDF collaboration, T. Aaltonen et al., Evidence for a Mass Dependent Forward-Backward Asymmetry in Top Quark Pair Production, Phys. Rev. D 83 (2011) 112003 [arXiv:1101.0034] [INSPIRE].

    ADS  Google Scholar 

  3. CDF collaboration, T. Aaltonen et al., Forward-Backward Asymmetry in Top Quark Production in \( p\bar{p} \) Collisions at sqrts = 1.96 TeV, Phys. Rev. Lett. 101 (2008) 202001 [arXiv:0806.2472] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D0 collaboration, V. Abazov et al., First measurement of the forward-backward charge asymmetry in top quark pair production, Phys. Rev. Lett. 100 (2008) 142002 [arXiv:0712.0851] [INSPIRE].

    Article  ADS  Google Scholar 

  5. D0 collaboration, V.M. Abazov et al., Forward-backward asymmetry in top quark-antiquark production, arXiv:1107.4995 [INSPIRE].

  6. J.H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D 59 (1999) 054017 [hep-ph/9807420] [INSPIRE].

    ADS  Google Scholar 

  7. J.H. Kuhn and G. Rodrigo, Charge asymmetry in hadroproduction of heavy quarks, Phys. Rev. Lett. 81 (1998) 49 [hep-ph/9802268] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J.H. Kuhn and G. Rodrigo, Charge asymmetries of top quarks at hadron colliders revisited, arXiv:1109.6830 [INSPIRE].

  9. G. Rodrigo and P. Ferrario, Charge asymmetry: A Theory appraisal, Nuovo Cim. C 33 (2010)04 [arXiv:1007.4328] [INSPIRE].

    Google Scholar 

  10. Measurement of the Charge Asymmetry in Top Quark Pair Production, PAS-TOP-11-014 (Measurement of the Charge Asymmetry in Top Quark Pair Production).

  11. ATLAS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt {s} = 7TeV \) using the ATLAS detector, ATLAS-CONF-2011-106 (2011).

  12. Y. Bai, J.L. Hewett, J. Kaplan and T.G. Rizzo, LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry, JHEP 03 (2011) 003 [arXiv:1101.5203] [INSPIRE].

    Article  ADS  Google Scholar 

  13. P. Ferrario and G. Rodrigo, Constraining heavy colored resonances from top-antitop quark events, Phys. Rev. D 80 (2009) 051701 [arXiv:0906.5541] [INSPIRE].

    ADS  Google Scholar 

  14. S. Jung, H. Murayama, A. Pierce and J.D. Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D 81 (2010) 015004 [arXiv:0907.4112] [INSPIRE].

    ADS  Google Scholar 

  15. F. del Aguila, J. de Blas, P. Langacker and M. Pérez-Victoria, Impact of extra particles on indirect Zlimits, Phys. Rev. D 84 (2011) 015015 [arXiv:1104.5512] [INSPIRE].

    ADS  Google Scholar 

  16. G.F. Giudice, B. Gripaios and R. Sundrum, Flavourful Production at Hadron Colliders, JHEP 08 (2011) 055 [arXiv:1105.3161] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Djouadi, G. Moreau and F. Richard, Forward-backward asymmetries of the bottom and top quarks in warped extra-dimensional models: LHC predictions from the LEP and Tevatron anomalies, Phys. Lett. B 701 (2011) 458 [arXiv:1105.3158] [INSPIRE].

    ADS  Google Scholar 

  18. R. Barcelo, A. Carmona, M. Masip and J. Santiago, Gluon excitations in t tbar production at hadron colliders, Phys. Rev. D 84 (2011) 014024[arXiv:1105.3333] [INSPIRE].

    ADS  Google Scholar 

  19. C.-H. Chen, S.S. Law and R.-H. Li, Rare B decays and Tevatron top-pair asymmetry, J. Phys. G 38 (2011) 115008 [arXiv:1104.1497] [INSPIRE].

    ADS  Google Scholar 

  20. A.E. Nelson, T. Okui and T.S. Roy, A unified, flavor symmetric explanation for the t-tbar asymmetry and Wjj excess at CDF, Phys. Rev. D 84 (2011) 094007 [arXiv:1104.2030] [INSPIRE].

    ADS  Google Scholar 

  21. X.-P. Wang, Y.-K. Wang, B. Xiao, J. Xu and S.-h. Zhu, New color-octet vector boson revisited, Phys. Rev. D 83 (2011) 115010 [arXiv:1104.1917] [INSPIRE].

  22. C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, An Effective approach to same sign top pair production at the LHC and the forward-backward asymmetry at the Tevatron, Phys. Lett. B 703 (2011) 306 [arXiv:1104.1798] [INSPIRE].

    ADS  Google Scholar 

  23. S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry and dijet resonances, Phys. Rev. D 84 (2011)055018 [arXiv:1104.3139] [INSPIRE].

    ADS  Google Scholar 

  24. G. Zhu, B physics constraints on a flavor symmetric scalar model to account for the tt asymmetry and Wjj excess at CDF, Phys. Lett. B 703 (2011) 142 [arXiv:1104.3227] [INSPIRE].

    ADS  Google Scholar 

  25. P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An Effective Z’, Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].

    ADS  Google Scholar 

  26. D.-W. Jung, P. Ko and J.S. Lee, Possible Common Origin of the Top Forward-backward Asymmetry and the CDF Dijet Resonance, Phys. Rev. D 84 (2011) 055027 [arXiv:1104.4443] [INSPIRE].

    ADS  Google Scholar 

  27. J. Shu, K. Wang and G. Zhu, A Revisit to Top Quark Forward-Backward Asymmetry, arXiv:1104.0083 [INSPIRE].

  28. A. Rajaraman, Z. Surujon and T.M. Tait, Asymmetric Leptons for Asymmetric Tops, arXiv:1104.0947 [INSPIRE].

  29. J. Aguilar-Saavedra and M. Pérez-Victoria, No like-sign tops at Tevatron: Constraints on extended models and implications for the t tbar asymmetry, Phys. Lett. B 701 (2011) 93 [arXiv:1104.1385] [INSPIRE].

    ADS  Google Scholar 

  30. M.R. Buckley, D. Hooper, J. Kopp and E. Neil, Light ZBosons at the Tevatron, Phys. Rev. D 83 (2011) 115013 [arXiv:1103.6035] [INSPIRE].

    ADS  Google Scholar 

  31. S. Jung, A. Pierce and J.D. Wells, Top quark asymmetry from a non-Abelian horizontal symmetry, Phys. Rev. D 83 (2011) 114039 [arXiv:1103.4835] [INSPIRE].

    ADS  Google Scholar 

  32. S. Casagrande, Indirect tests of the Randall-Sundrum model, arXiv:1103.4131 [INSPIRE].

  33. Z. Ligeti, G.M. Tavares and M. Schmaltz, Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies, JHEP 06 (2011) 109 [arXiv:1103.2757] [INSPIRE].

    Article  ADS  Google Scholar 

  34. C. Grojean, E. Salvioni and R. Torre, A weakly constrained Wat the early LHC, JHEP 07 (2011)002 [arXiv:1103.2761] [INSPIRE].

    Article  ADS  Google Scholar 

  35. K. Blum, C. Delaunay, O. Gedalia, Y. Hochberg, S.J. Lee, et al., Implications of the CDF \( t\bar{t} \) Forward-Backward Asymmetry for Boosted Top Physics, Phys. Lett. B 702 (2011) 364 [arXiv:1102.3133] [INSPIRE].

    Article  ADS  Google Scholar 

  36. R. Foot, Top quark forward-backward asymmetry from SU(Nc ) color, Phys. Rev. D 83 (2011)114013 [arXiv:1103.1940] [INSPIRE].

    ADS  Google Scholar 

  37. E. Barreto, Y. Coutinho and J. Sa Borges, Top quark forward-backward asymmetry from the 3-3-1 model, Phys. Rev. D 83 (2011) 054006 [arXiv:1103.1266] [INSPIRE].

    ADS  Google Scholar 

  38. A.R. Zerwekh, The Axigluon, a Four-Site Model and the Top Quark Forward-Backward Asymmetry at the Tevatron, Phys. Lett. B 704 (2011) 62 [arXiv:1103.0956] [INSPIRE].

    ADS  Google Scholar 

  39. G. Isidori and J.F. Kamenik, Forward-Backward t tbar Asymmetry from Anomalous Stop Pair Production, Phys. Lett. B 700 (2011) 145 [arXiv:1103.0016] [INSPIRE].

    ADS  Google Scholar 

  40. K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].

    Article  ADS  Google Scholar 

  41. B. Grinstein, A.L. Kagan, M. Trott and J. Zupan, Forward-backward asymmetry in tt‾ production from flavour symmetries, Phys. Rev. Lett. 107 (2011) 012002 [arXiv:1102.3374] [INSPIRE].

    Article  ADS  Google Scholar 

  42. V. Barger, W.-Y. Keung and C.-T. Yu, Tevatron Asymmetry of Tops in a W,ZModel, Phys. Lett. B 698 (2011) 243 [arXiv:1102.0279] [INSPIRE].

    ADS  Google Scholar 

  43. J. Shelton and K.M. Zurek, Maximal flavor violation from new right-handed gauge bosons, Phys. Rev. D 83 (2011) 091701 [arXiv:1101.5392] [INSPIRE].

    ADS  Google Scholar 

  44. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez and E. Ponton, Extraordinary Phenomenology from Warped Flavor Triviality, Phys. Lett. B 703 (2011) 486 [arXiv:1101.2902] [INSPIRE].

    ADS  Google Scholar 

  45. K. Cheung and T.-C. Yuan, Top Quark Forward-Backward Asymmetry in the Large Invariant Mass Region, Phys. Rev. D 83 (2011) 074006 [arXiv:1101.1445] [INSPIRE].

    ADS  Google Scholar 

  46. Y. Cui, Z. Han and M.D. Schwartz, Top condensation as a motivated explanation of the top forward-backward asymmetry, JHEP 07 (2011) 127 [arXiv:1106.3086] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G.M. Tavares and M. Schmaltz, Explaining the t-tbar asymmetry with a light axigluon, Phys. Rev. D 84 (2011) 054008 [arXiv:1107.0978] [INSPIRE].

    ADS  Google Scholar 

  48. J. Aguilar-Saavedra and M. Pérez-Victoria, Shaping the top asymmetry, Phys. Lett. B 705 (2011)228 [arXiv:1107.2120] [INSPIRE].

    ADS  Google Scholar 

  49. U. Haisch and S. Westhoff, Massive Color-Octet Bosons: Bounds on Effects in Top-Quark Pair Production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].

    Article  ADS  Google Scholar 

  50. M. Bauer, F. Goertz, U. Haisch, T. Pfoh and S. Westhoff, Top-Quark Forward-Backward Asymmetry in Randall-Sundrum Models Beyond the Leading Order, JHEP 11 (2010) 039 [arXiv:1008.0742] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J.F. Kamenik, J. Shu and J. Zupan, Review of new physics effects in t-tbar production, arXiv:1107.5257 [INSPIRE].

  52. CMS collaboration, S. Chatrchyan et al., Search for Same-Sign Top-Quark Pair Production at sqrt(s) = 7 TeV and Limits on Flavour Changing Neutral Currents in the Top Sector, JHEP 08 (2011) 005 [arXiv:1106.2142] [INSPIRE].

    Article  ADS  Google Scholar 

  53. M.I. Gresham, I.-W. Kim and K.M. Zurek, On Models of New Physics for the Tevatron Top AF B , Phys. Rev. D 83 (2011) 114027 [arXiv:1103.3501] [INSPIRE].

    ADS  Google Scholar 

  54. M.I. Gresham, I.-W. Kim and K.M. Zurek, Tevatron Top AF B Versus LHC Top Physics, arXiv:1107.4364 [INSPIRE].

  55. Y.-k. Wang, B. Xiao and S.-h. Zhu, One-side Forward-backward Asymmetry in Top Quark Pair Production at CERN Large Hadron Collider, Phys. Rev. D 82 (2010) 094011 [arXiv:1008.2685] [INSPIRE].

    ADS  Google Scholar 

  56. J.L. Hewett, J. Shelton, M. Spannowsky, T.M. Tait and M. Takeuchi, AF B Meets LHC, Phys. Rev. D 84 (2011) 054005 [arXiv:1103.4618] [INSPIRE].

    ADS  Google Scholar 

  57. B. Xiao, Y.-K. Wang, Z.-Q. Zhou and S.-h. Zhu, Edge Charge Asymmetry in Top Pair Production at the LHC, Phys. Rev. D 83 (2011) 057503 [arXiv:1101.2507] [INSPIRE].

    ADS  Google Scholar 

  58. B. Bhattacherjee, S.S. Biswal and D. Ghosh, Top quark forward-backward asymmetry at Tevatron and its implications at the LHC, Phys. Rev. D 83 (2011) 091501 [arXiv:1102.0545] [INSPIRE].

    ADS  Google Scholar 

  59. J. Aguilar-Saavedra and M. Pérez-Victoria, Asymmetries in t t production: LHC versus Tevatron, arXiv:1105.4606 [INSPIRE].

  60. E.L. Berger, Q.-H. Cao, C.-R. Chen and H. Zhang, Top Quark Polarization As A Probe of Models with Extra Gauge Bosons, Phys. Rev. D 83 (2011) 114026 [arXiv:1103.3274] [INSPIRE].

    ADS  Google Scholar 

  61. R.M. Godbole, K. Rao, S.D. Rindani and R.K. Singh, On measurement of top polarization as a probe of tt production mechanisms at the LHC, JHEP 11 (2010) 144 [arXiv:1010.1458] [INSPIRE].

    Article  ADS  Google Scholar 

  62. J. Cao, L. Wu and J.M. Yang, New physics effects on top quark spin correlation and polarization at the LHC: a comparative study in different models, Phys. Rev. D 83 (2011) 034024 [arXiv:1011.5564] [INSPIRE].

    ADS  Google Scholar 

  63. D.-W. Jung, P. Ko and J.S. Lee, Longitudinal top polarization as a probe of a possible origin of forward-backward asymmetry of the top quark at the Tevatron, Phys. Lett. B 701 (2011) 248 [arXiv:1011.5976] [INSPIRE].

    ADS  Google Scholar 

  64. D. Choudhury, R.M. Godbole, S.D. Rindani and P. Saha, Top polarization, forward-backward asymmetry and new physics, Phys. Rev. D 84 (2011) 014023 [arXiv:1012.4750] [INSPIRE].

    ADS  Google Scholar 

  65. W. Bernreuther and Z.-G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC., Nucl. Phys. B 837 (2010) 90 [arXiv:1003.3926] [INSPIRE].

    Article  ADS  Google Scholar 

  66. K. Melnikov and M. Schulze, NLO QCD corrections to top quark pair production and decay at hadron colliders, JHEP 08 (2009) 049 [arXiv:0907.3090] [INSPIRE].

    Article  ADS  Google Scholar 

  67. D. Krohn, T. Liu, J. Shelton and L.-T. Wang, A Polarized View of the Top Asymmetry, Phys. Rev. D 84 (2011) 074034 [arXiv:1105.3743] [INSPIRE].

    ADS  Google Scholar 

  68. Y. Bai and Z. Han, Improving the Top Quark Forward-Backward Asymmetry Measurement at the LHC, Journal of High Energy Physics (JHEP) (2011) [arXiv:1106.5071] [INSPIRE].

  69. M.I. Gresham, I.-W. Kim and K.M. Zurek, Searching for Top Flavor Violating Resonances, Phys. Rev. D 84 (2011) 034025 [arXiv:1102.0018] [INSPIRE].

    ADS  Google Scholar 

  70. N. Craig, C. Kilic and M.J. Strassler, LHC Charge Asymmetry as Constraint on Models for the Tevatron Top Anomaly, Phys. Rev. D 84 (2011) 035012 [arXiv:1103.2127] [INSPIRE].

    ADS  Google Scholar 

  71. J. Cao, L. Wang, L. Wu and J.M. Yang, Top quark forward-backward asymmetry, FCNC decays and like-sign pair production as a joint probe of new physics, Phys. Rev. D 84 (2011) 074001 [arXiv:1101.4456] [INSPIRE].

    ADS  Google Scholar 

  72. E. Alvarez, L. Da Rold, J.I.S. Vietto and A. Szynkman, Phenomenology of a light gluon resonance in top-physics at Tevatron and LHC, JHEP 09 (2011) 007 [arXiv:1107.1473] [INSPIRE].

    Article  ADS  Google Scholar 

  73. E.L. Berger, Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Top Quark Forward-Backward Asymmetry and Same-Sign Top Quark Pairs, Phys. Rev. Lett. 106 (2011) 201801 [arXiv:1101.5625] [INSPIRE].

    Article  ADS  Google Scholar 

  74. M.J. Strassler, A Note on Measuring Charm and Bottom Forward-Backward Asymmetries at the Tevatron, arXiv:1102.0736 [INSPIRE].

  75. Y.-k. Wang, B. Xiao and S.-h. Zhu, One-side forward-backward asymmetry at the LHC, Phys. Rev. D 83 (2011) 015002 [arXiv:1011.1428] [INSPIRE].

    ADS  Google Scholar 

  76. L.M. Sehgal and M. Wanninger, Forward - Backward Asymmetry In Two Jet Events: Signature Of Axigluons In Proton - Anti-proton Collisions, Phys. Lett. B 200 (1988) 211 [INSPIRE].

    ADS  Google Scholar 

  77. J. Alwall et al., MadGraph/MadEvent v4: The New Web Generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].

    Article  ADS  Google Scholar 

  78. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  Google Scholar 

  79. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  80. M. Cacciari, G. Salam and G. Soyez, FastJet, http://fastjet.fr/.

  81. M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641 (2006)57 [hep-ph/0512210] [INSPIRE].

    ADS  Google Scholar 

  82. M. Cacciari, G.P. Salam and G. Soyez, The Anti-k(t) jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  Google Scholar 

  83. The ATLAS collaboration, G. Aad et al., Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics, arXiv:0901.0512 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Krohn.

Additional information

ArXiv ePrint: 1108.3301

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahawala, D., Krohn, D. & Strassler, M.J. Measuring the bottom-quark forward-central asymmetry at the LHC. J. High Energ. Phys. 2012, 69 (2012). https://doi.org/10.1007/JHEP01(2012)069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)069

Keywords

Navigation