Skip to main content
Log in

The first order hydrodynamics via AdS/CFT correspondence in the Gauss-Bonnet gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In the spirit of the AdS/CFT correspondence, we investigate the hydrodynamics of the dual conformal field in the Gauss-Bonnet gravity. By considering the parameters of the boosted black brane in the Gauss-Bonnet gravity as functions of boundary coordinates, and then solving the corresponding correction terms, we calculate the first order stress-energy tensor of the dual conformal field. From this first order stress-energy tensor, we also obtain the shear viscosity and entropy density. And these results are consistent with those of some previous works from the effective coupling of gravitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MATH  MathSciNet  Google Scholar 

  2. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MATH  MathSciNet  Google Scholar 

  4. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES].

    Google Scholar 

  6. Y. Brihaye and B. Hartmann, Holographic superconductors in 3 + 1 dimensions away from the probe limit, Phys. Rev. D 81 (2010) 126008 [arXiv:1003.5130] [SPIRES].

    ADS  Google Scholar 

  7. G. Policastro, D.T. Son and A.O. Starinets, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [SPIRES].

    Article  ADS  Google Scholar 

  8. P. Kovtun, D.T. Son and A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons, JHEP 10 (2003) 064 [hep-th/0309213] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity, Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].

    Article  ADS  Google Scholar 

  10. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  11. J. Mas, Shear viscosity from R-charged AdS black holes, JHEP 03 (2006) 016 [hep-th/0601144] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. D.T. Son and A.O. Starinets, Hydrodynamics of R-charged black holes, JHEP 03 (2006) 052 [hep-th/0601157] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. O. Saremi, The viscosity bound conjecture and hydrodynamics of M2-brane theory at finite chemical potential, JHEP 10 (2006) 083 [hep-th/0601159] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. K. Maeda, M. Natsuume and T. Okamura, Viscosity of gauge theory plasma with a chemical potential from AdS/CFT, Phys. Rev. D 73 (2006) 066013 [hep-th/0602010] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  15. R.-G. Cai and Y.-W. Sun, Shear viscosity from AdS Born-Infeld black holes, JHEP 09 (2008) 115 [arXiv:0807.2377] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. R. Brustein and A.J.M. Medved, The ratio of shear viscosity to entropy density in generalized theories of gravity, Phys. Rev. D 79 (2009) 021901 [arXiv:0808.3498] [SPIRES].

    ADS  Google Scholar 

  17. R. Brustein and A.J.M. Medved, The shear diffusion coefficient for generalized theories of gravity, Phys. Lett. B 671 (2009) 119 [arXiv:0810.2193] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

    ADS  Google Scholar 

  19. R.-G. Cai, Z.-Y. Nie and Y.-W. Sun, Shear viscosity from effective couplings of gravitons, Phys. Rev. D 78 (2008) 126007 [arXiv:0811.1665] [SPIRES].

    ADS  Google Scholar 

  20. R.-G. Cai, Z.-Y. Nie, N. Ohta and Y.-W. Sun, Shear viscosity from Gauss-Bonnet gravity with a dilaton coupling, Phys. Rev. D 79 (2009) 066004 [arXiv:0901.1421] [SPIRES].

    ADS  Google Scholar 

  21. D. Astefanesei, N. Banerjee and S. Dutta, Moduli and electromagnetic black brane holography, arXiv:1008.3852 [SPIRES].

  22. A. Buchel, J.T. Liu and A.O. Starinets, Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 707 (2005) 56 [hep-th/0406264] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Buchel, Shear viscosity of boost invariant plasma at finite coupling, Nucl. Phys. B 802 (2008) 281 [arXiv:0801.4421] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Buchel, Shear viscosity of CFT plasma at finite coupling, Phys. Lett. B 665 (2008) 298 [arXiv:0804.3161] [SPIRES].

    ADS  Google Scholar 

  25. A. Buchel, Resolving disagreement for η/s in a CFT plasma at finite coupling, Nucl. Phys. B 803 (2008) 166 [arXiv:0805.2683] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Benincasa and A. Buchel, Transport properties of N = 4 supersymmetric Yang-Mills theory at finite coupling, JHEP 01 (2006) 103 [hep-th/0510041] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Buchel, R.C. Myers, M.F. Paulos and A. Sinha, Universal holographic hydrodynamics at finite coupling, Phys. Lett. B 669 (2008) 364 [arXiv:0808.1837] [SPIRES].

    ADS  Google Scholar 

  28. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [SPIRES].

    ADS  Google Scholar 

  29. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics. II: sound waves, JHEP 12 (2002) 054 [hep-th/0210220] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Buchel, On universality of stress-energy tensor correlation functions in supergravity, Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  32. T.D. Cohen, Is there a ‘most perfect fluid’ consistent with quantum field theory?, Phys. Rev. Lett. 99 (2007) 021602 [hep-th/0702136] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  34. D.T. Son, Comment on ‘Is there a ‘most perfect fluid’ consistent with quantum field theory?’, Phys. Rev. Lett. 100 (2008) 029101 [arXiv:0709.4651] [SPIRES].

    Article  ADS  Google Scholar 

  35. A. Cherman, T.D. Cohen and P.M. Hohler, A sticky business: the status of the cojectured viscosity/entropy density bound, JHEP 02 (2008) 026 [arXiv:0708.4201] [SPIRES].

    Article  ADS  Google Scholar 

  36. J.-W. Chen, M. Huang, Y.-H. Li, E. Nakano and D.-L. Yang, Phase transitions and the perfectness of fluids, Phys. Lett. B 670 (2008) 18 [arXiv:0709.3434] [SPIRES].

    ADS  Google Scholar 

  37. I. Fouxon, G. Betschart and J.D. Bekenstein, The bound on viscosity and the generalized second law of thermodynamics, Phys. Rev. D 77 (2008) 024016 [arXiv:0710.1429] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. A. Dobado, F.J. Llanes-Estrada and J.M.T. Rincon, The status of the KSS bound and its possible violations (how perfect can a fluid be?), AIP Conf. Proc. 1031 (2008) 221 [arXiv:0804.2601] [SPIRES].

    Article  ADS  Google Scholar 

  39. K. Landsteiner and J. Mas, The shear viscosity of the non-commutative plasma, JHEP 07 (2007) 088 [arXiv:0706.0411] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  40. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity bound violation in higher derivative gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  41. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, The viscosity bound and causality violation, Phys. Rev. Lett. 100 (2008) 191601 [arXiv:0802.3318] [SPIRES].

    Article  ADS  Google Scholar 

  42. Y. Kats and P. Petrov, Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory, JHEP 01 (2009) 044 [arXiv:0712.0743] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. J. de Boer, M. Kulaxizi and A. Parnachev, AdS 7 /CFT 6 , Gauss-Bonnet gravity and viscosity bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [SPIRES].

    Article  Google Scholar 

  44. X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160] [SPIRES].

    Article  ADS  Google Scholar 

  45. A. Buchel et al., Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [SPIRES].

    Article  ADS  Google Scholar 

  46. A. Adams, A. Maloney, A. Sinha and S.E. Vazquez, 1/N effects in non-relativistic gauge-gravity duality, JHEP 03 (2009) 097 [arXiv:0812.0166] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  47. J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock gravities and black holes, JHEP 06 (2010) 008 [arXiv:0912.1877] [SPIRES].

    Article  Google Scholar 

  48. X.O. Camanho and J.D. Edelstein, Causality in AdS/CFT and Lovelock theory, JHEP 06 (2010) 099 [arXiv:0912.1944] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  49. X.O. Camanho, J.D. Edelstein and M.F. Paulos, Lovelock theories, holography and the fate of the viscosity bound, arXiv:1010.1682 [SPIRES].

  50. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear fluid dynamics from gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  51. M. Rangamani, Gravity & hydrodynamics: lectures on the fluid-gravity correspondence, Class. Quant. Grav. 26 (2009) 224003 [arXiv:0905.4352] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Hur, K.K. Kim and S.-J. Sin, Hydrodynamics with conserved current from the gravity dual, JHEP 03 (2009) 036 [arXiv:0809.4541] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  53. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  54. N. Banerjee et al., Hydrodynamics from charged black branes, arXiv:0809.2596 [SPIRES].

  55. H.S. Tan, Born-Infeld hydrodynamics via gauge/gravity duality, JHEP 04 (2009) 131 [arXiv:0903.3424] [SPIRES].

    Article  ADS  Google Scholar 

  56. D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys. 12 (1971) 498 [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev. D 36 (1987) 392 [SPIRES].

    ADS  Google Scholar 

  58. Y. Brihaye and E. Radu, Black objects in the Einstein-Gauss-Bonnet theory with negative cosmological constant and the boundary counterterm method, JHEP 09 (2008) 006 [arXiv:0806.1396] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  59. D. Astefanesei, N. Banerjee and S. Dutta, (Un)attractor black holes in higher derivative AdS gravity, JHEP 11 (2008) 070 [arXiv:0806.1334] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  60. D.G. Boulware and S. Deser, String generated gravity models, Phys. Rev. Lett. 55 (1985) 2656 [SPIRES].

    Article  ADS  Google Scholar 

  61. J.T. Wheeler, Symmetric solutions to the Gauss-Bonnet extended Einstein equations, Nucl. Phys. B 268 (1986) 737 [SPIRES].

    Article  ADS  Google Scholar 

  62. R.C. Myers and J.Z. Simon, Black hole thermodynamics in Lovelock gravity, Phys. Rev. D 38 (1988) 2434 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. R.-G. Cai and Q. Guo, Gauss-Bonnet black holes in dS spaces, Phys. Rev. D 69 (2004) 104025 [hep-th/0311020] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. R.-G. Cai, Gauss-Bonnet black holes in AdS spaces, Phys. Rev. D 65 (2002) 084014 [hep-th/0109133] [SPIRES].

    ADS  Google Scholar 

  65. V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [SPIRES].

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. R. Emparan, C.V. Johnson and R.C. Myers, Surface terms as counterterms in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 104001 [hep-th/9903238] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  67. R.B. Mann, Misner string entropy, Phys. Rev. D 60 (1999) 104047 [hep-th/9903229] [SPIRES].

    ADS  Google Scholar 

  68. R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys. Rev. D 60 (1999) 046002 [hep-th/9903203] [SPIRES].

    ADS  Google Scholar 

  69. F. Bigazzi and A.L. Cotrone, An elementary stringy estimate of transport coefficients of large temperature QCD, JHEP 08 (2010) 128 [arXiv:1006.4634] [SPIRES].

    Article  ADS  Google Scholar 

  70. I. Kanitscheider and K. Skenderis, Universal hydrodynamics of non-conformal branes, JHEP 04 (2009) 062 [arXiv:0901.1487] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Peng Hu.

Additional information

ArXiv ePrint: 1012.0174

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YP., Li, HF. & Nie, ZY. The first order hydrodynamics via AdS/CFT correspondence in the Gauss-Bonnet gravity. J. High Energ. Phys. 2011, 123 (2011). https://doi.org/10.1007/JHEP01(2011)123

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)123

Keywords

Navigation