Skip to main content
Log in

Lepton flavor violation in complex SUSY seesaw models with nearly tribimaximal mixing

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We survey the lepton flavor violation branching ratios Br(μ), Br(τμγ), and Br(τ) in mSUGRA for a broad class of lepton mass matrix textures that give nearly tribimaximal lepton mixing. Small neutrino masses are generated by the type-I seesaw mechanism with non-degenerate right-handed neutrino masses. The textures exhibit a hierarchical mass pattern and can be understood from flavor models giving rise to large leptonic mixing. We study the branching ratios for the most general CP-violating forms of the textures. It is demonstrated that the branching ratios can be enhanced by 2-3 orders of magnitude as compared to the CP-conserving case. The branching ratios exhibit, however, a strong dependence on the choice of the phases in the Lagrangian which affects the significance of flavor models. In particular, for general CP-phases, the lepton flavor violating rates appear to be essentially uncorrelated with the possible high-and low-energy lepton mixing parameters, such as the reactor angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Super-Kamiokande collaboration, S. Fukuda et al., Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data, Phys. Lett. B 539 (2002) 179 [hep-ex/0205075] [SPIRES].

    ADS  Google Scholar 

  2. SNO collaboration, Q.R. Ahmad et al., Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters, Phys. Rev. Lett. 89 (2002) 011302 [nucl-ex/0204009] [SPIRES].

    Article  ADS  Google Scholar 

  3. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].

    Article  ADS  Google Scholar 

  4. A. Gando et al., Constraints on θ 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND, arXiv:1009.4771 [SPIRES].

  5. KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [SPIRES].

    Article  ADS  Google Scholar 

  6. CHOOZ collaboration, M. Apollonio et al., Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station, Eur. Phys. J. C 27 (2003) 331 [hep-ex/0301017] [SPIRES].

    ADS  Google Scholar 

  7. K2K collaboration, E. Aliu et al., Evidence for muon neutrino oscillation in an accelerator-based experiment, Phys. Rev. Lett. 94 (2005) 081802 [hep-ex/0411038] [SPIRES].

    Article  ADS  Google Scholar 

  8. T. Schwetz, M. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].

    Article  ADS  Google Scholar 

  9. B. Pontecorvo, Mesonium and antimesonium, Sov. Phys. JETP 6 (1957) 429 [SPIRES].

    ADS  Google Scholar 

  10. Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [SPIRES].

    Article  MATH  ADS  Google Scholar 

  11. P.F. Harrison, D.H. Perkins and W.G. Scott, A redetermination of the neutrino mass-squared difference in tri-maximal mixing with terrestrial matter effects, Phys. Lett. B 458 (1999) 79 [hep-ph/9904297] [SPIRES].

    ADS  Google Scholar 

  12. P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].

    ADS  Google Scholar 

  13. F. Plentinger and W. Rodejohann, Deviations from tribimaximal neutrino mixing, Phys. Lett. B 625 (2005) 264 [hep-ph/0507143] [SPIRES].

    ADS  Google Scholar 

  14. D. Majumdar and A. Ghosal, Probing deviations from tri-bimaximal mixing through ultra high energy neutrino signals, Phys. Rev. D 75 (2007) 113004 [hep-ph/0608334] [SPIRES].

    ADS  Google Scholar 

  15. A.H. Chan, H. Fritzsch, S. Luo and Z.-z. Xing, Deviations from Tri-bimaximal Neutrino Mixing in Type-II Seesaw and Leptogenesis, Phys. Rev. D 76 (2007) 073009 [arXiv:0704.3153] [SPIRES].

    ADS  Google Scholar 

  16. S.F. King, Parametrizing the lepton mixing matrix in terms of deviations from tri-bimaximal mixing, Phys. Lett. B 659 (2008) 244 [arXiv:0710.0530] [SPIRES].

    ADS  Google Scholar 

  17. Y. Shimizu and R. Takahashi, Deviations from Tri-Bimaximality and Quark-Lepton Complementarity, arXiv:1009. 5504 [SPIRES].

  18. Z.-z. Xing, Nearly tri-bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [SPIRES].

  19. Z.-z. Xing, H. Zhang and S. Zhou, Nearly tri-bimaximal neutrino mixing and CP-violation from μ − τ symmetry breaking, Phys. Lett. B 641 (2006) 189 [hep-ph/0607091] [SPIRES].

    ADS  Google Scholar 

  20. E. Ma, Near Tribimaximal Neutrino Mixing with Delta(27) Symmetry, Phys. Lett. B 660 (2008) 505 [arXiv:0709.0507] [SPIRES].

    ADS  Google Scholar 

  21. A. Mondragon, M. Mondragon and E. Peinado, Nearly tri-bimaximal mixing in the S 3 flavour symmetry, AIP Conf. Proc. 1026 (2008) 164 [arXiv:0712.2488] [SPIRES].

    Article  ADS  Google Scholar 

  22. P. Minkowski, μ → eγ at a Rate of One Out of 1-Billion Muon Decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].

    ADS  Google Scholar 

  23. T. Yanagida, in Proceedings of the Workshop on the Unified Theory and Baryon Number in the Universe, KEK, Tsukuba Japan (1979).

    Google Scholar 

  24. M. Gell-Mann, P. Ramond and R. Slansky, in Proceedings of the Workshop on Supergravity, Stony Brook, New York U.S.A. (1979).

    Google Scholar 

  25. S.L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargese Summer Institute on Quarks and Leptons, New York U.S.A. (1980).

  26. M. Magg and C. Wetterich, Neutrino Mass Problem And Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [SPIRES].

    ADS  Google Scholar 

  27. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].

    Article  ADS  Google Scholar 

  28. R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [SPIRES].

    ADS  Google Scholar 

  29. J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].

    ADS  Google Scholar 

  30. G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [SPIRES].

    Article  ADS  Google Scholar 

  31. H. Georgi, H.R. Quinn and S. Weinberg, Hierarchy of Interactions in Unified Gauge Theories, Phys. Rev. Lett. 33 (1974) 451 [SPIRES].

    Article  ADS  Google Scholar 

  32. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys. Rev. D 24 (1981) 1681 [SPIRES].

    ADS  Google Scholar 

  33. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [SPIRES].

    Article  ADS  Google Scholar 

  34. F. Borzumati and A. Masiero, Large Muon and electron Number Violations in Supergravity Theories, Phys. Rev. Lett. 57 (1986) 961 [SPIRES].

    Article  ADS  Google Scholar 

  35. M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45 [SPIRES].

    ADS  Google Scholar 

  36. W. Buchmüller, P. Di Bari and M. Plümacher, Leptogenesis for pedestrians, Ann. Phys. 315 (2005) 305 [hep-ph/0401240] [SPIRES].

    Article  MATH  ADS  Google Scholar 

  37. E. Nardi, Y. Nir, E. Roulet and J. Racker, The importance of flavor in leptogenesis, JHEP 01 (2006) 164 [hep-ph/0601084] [SPIRES].

    Article  ADS  Google Scholar 

  38. Y. Nir, Introduction to leptogenesis, hep-ph/0702199 [SPIRES].

  39. M.-C. Chen, TASI 2006 Lectures on Leptogenesis, hep-ph/0703087 [SPIRES].

  40. S. Albino, F. Deppisch and R. Rückl, Supersymmetric lepton flavor violation and leptogenesis, hep-ph/0606226 [SPIRES].

  41. K.A. Hochmuth and W. Rodejohann, Low and High Energy Phenomenology of Quark-Lepton Complementarity Scenarios, Phys. Rev. D 75 (2007) 073001 [hep-ph/0607103] [SPIRES].

    ADS  Google Scholar 

  42. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [SPIRES].

    Article  ADS  Google Scholar 

  43. A.Y. Smirnov, Neutrinos: ’...Annus mirabilis’, hep-ph/0402264 [SPIRES].

  44. M. Raidal, Relation between the neutrino and quark mixing angles and grand unification, Phys. Rev. Lett. 93 (2004) 161801 [hep-ph/0404046] [SPIRES].

    Article  ADS  Google Scholar 

  45. H. Minakata and A.Y. Smirnov, Neutrino Mixing and Quark-Lepton Complementarity, Phys. Rev. D 70 (2004) 073009 [hep-ph/0405088] [SPIRES].

    ADS  Google Scholar 

  46. F. Plentinger, G. Seidl and W. Winter, Systematic parameter space search of extended quark-lepton complementarity, Nucl. Phys. B 791 (2008) 60 [hep-ph/0612169] [SPIRES].

    Article  ADS  Google Scholar 

  47. F. Plentinger, G. Seidl and W. Winter, The Seesaw Mechanism in Quark-Lepton Complementarity, Phys. Rev. D 76 (2007) 113003 [arXiv:0707.2379] [SPIRES].

    ADS  Google Scholar 

  48. F. Plentinger, G. Seidl and W. Winter, Group Space Scan of Flavor Symmetries for Nearly Tribimaximal Lepton Mixing, JHEP 04 (2008) 077 [arXiv:0802.1718] [SPIRES].

    Article  Google Scholar 

  49. F. Plentinger and G. Seidl, Mapping out SU(5) GUTs with non-Abelian discrete flavor symmetries, Phys. Rev. D 78 (2008) 045004 [arXiv:0803.2889] [SPIRES].

    ADS  Google Scholar 

  50. W. Winter, Neutrino Oscillation Observables from Mass Matrix Structure, Phys. Lett. B 659 (2008) 275 [arXiv:0709.2163] [SPIRES].

    ADS  Google Scholar 

  51. S. Niehage and W. Winter, Entangled maximal mixings in U PMNS = U l U ν and a connection to complex mass textures, Phys. Rev. D 78 (2008) 013007 [arXiv:0804.1546] [SPIRES].

    ADS  Google Scholar 

  52. G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A 4, JHEP 03 (2008) 052 [arXiv:0802.0090] [SPIRES].

    Article  ADS  Google Scholar 

  53. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A 4 Flavour Symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160] [SPIRES].

    Article  ADS  Google Scholar 

  54. G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A 4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [hep-ph/0512103] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  55. G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [hep-ph/0504165] [SPIRES].

    Article  ADS  Google Scholar 

  56. F. Bazzocchi, L. Merlo and S. Morisi, Fermion Masses and Mixings in a S 4 -based Model, Nucl. Phys. B 816 (2009) 204 [arXiv:0901.2086] [SPIRES].

    Article  ADS  Google Scholar 

  57. F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Tri-bimaximal Neutrino Mixing and Quark Masses from a Discrete Flavour Symmetry, Nucl. Phys. B 775 (2007) 120 [Erratum ibid. 836 (2010) 127] [hep-ph/0702194] [SPIRES].

    Article  ADS  Google Scholar 

  58. E. Ma and G. Rajasekaran, Softly broken A 4 symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 [hep-ph/0106291] [SPIRES].

    ADS  Google Scholar 

  59. K.S. Babu, E. Ma and J.W.F. Valle, Underlying A 4 symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 [hep-ph/0206292] [SPIRES].

    ADS  Google Scholar 

  60. M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A 4 family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 [hep-ph/0312265] [SPIRES].

    ADS  Google Scholar 

  61. P.H. Frampton and T.W. Kephart, Simple nonAbelian finite flavor groups and fermion masses, Int. J. Mod. Phys. A 10 (1995) 4689 [hep-ph/9409330] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  62. A. Aranda, C.D. Carone and R.F. Lebed, Maximal neutrino mixing from a minimal flavor symmetry, Phys. Rev. D 62 (2000) 016009 [hep-ph/0002044] [SPIRES].

    ADS  Google Scholar 

  63. P.D. Carr and P.H. Frampton, Group theoretic bases for tribimaximal mixing, hep-ph/0701034 [SPIRES].

  64. A. Aranda, Neutrino mixing from the double tetrahedral group T , Phys. Rev. D 76 (2007) 111301 [arXiv:0707.3661] [SPIRES].

    ADS  Google Scholar 

  65. J.A. Casas and A. Ibarra, Oscillating neutrinos and μ → e, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [SPIRES].

    Article  ADS  Google Scholar 

  66. Particle Data Group collaboration, S. Eidelman et al., Review of particle physics, Phys. Lett. B 592 (2004) 1 [SPIRES].

    ADS  Google Scholar 

  67. BABAR collaboration, B. Aubert et al., Search for lepton flavor violation in the decay τ → μγ, Phys. Rev. Lett. 95 (2005) 041802 [hep-ex/0502032] [SPIRES].

    Article  ADS  Google Scholar 

  68. BABAR collaboration, B. Aubert et al., Search for lepton flavor violation in the decay τ ± → e ± γ, Phys. Rev. Lett. 96 (2006) 041801 [hep-ex/0508012] [SPIRES].

    Article  ADS  Google Scholar 

  69. MEG collaboration, D. Nicolo, The MEG experiment: status and perspectives, AIP Conf. Proc. 1222 (2010) 403 [SPIRES].

    Article  ADS  Google Scholar 

  70. J. Hisano and D. Nomura, Solar and atmospheric neutrino oscillations and lepton flavor violation in supersymmetric models with the right-handed neutrinos, Phys. Rev. D 59 (1999) 116005 [hep-ph/9810479] [SPIRES].

    ADS  Google Scholar 

  71. F. Deppisch, H. Päs, A. Redelbach, R. Rückl and Y. Shimizu, Probing the Majorana mass scale of right-handed neutrinos in mSUGRA, Eur. Phys. J. C 28 (2003) 365 [hep-ph/0206122] [SPIRES].

    ADS  Google Scholar 

  72. K. Agashe and M. Graesser, Signals of supersymmetric lepton flavor violation at the LHC, Phys. Rev. D 61 (2000) 075008 [hep-ph/9904422] [SPIRES].

    ADS  Google Scholar 

  73. Y.M. Andreev, S.I. Bityukov, N.V. Krasnikov and A.N. Toropin, Using the e ± μ + ET miss signature in the search for supersymmetry and lepton flavour violation in neutralino decays, Phys. Atom. Nucl. 70 (2007) 1717 [hep-ph/0608176] [SPIRES].

    Article  ADS  Google Scholar 

  74. A. Bartl et al., Test of lepton flavour violation at LHC, Eur. Phys. J. C 46 (2006) 783 [hep-ph/0510074] [SPIRES].

    Article  ADS  Google Scholar 

  75. F. Deppisch, Lepton Flavor Violation at the LHC, arXiv:0710.2525 [SPIRES].

  76. M. Raidal et al., Flavour physics of leptons and dipole moments, Eur. Phys. J. C 57 (2008) 13 [arXiv:0801.1826] [SPIRES].

    Article  ADS  Google Scholar 

  77. H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [SPIRES].

    ADS  Google Scholar 

  78. R.N. Mohapatra and S. Nussinov, Bimaximal neutrino mixing and neutrino mass matrix, Phys. Rev. D 60 (1999) 013002 [hep-ph/9809415] [SPIRES].

    ADS  Google Scholar 

  79. K.S. Babu and R.N. Mohapatra, Predictive schemes for bimaximal neutrino mixings, Phys. Lett. B 532 (2002) 77 [hep-ph/0201176] [SPIRES].

    ADS  Google Scholar 

  80. T. Ohlsson and G. Seidl, A flavor symmetry model for bilarge leptonic mixing and the lepton masses, Nucl. Phys. B 643 (2002) 247 [hep-ph/0206087] [SPIRES].

    Article  ADS  Google Scholar 

  81. T. Kitabayashi and M. Yasue, S(2L) permutation symmetry for left-handed mu and tau families and neutrino oscillations in an SU(3)L x U(1)N gauge model, Phys. Rev. D 67 (2003) 015006 [hep-ph/0209294] [SPIRES].

    ADS  Google Scholar 

  82. W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 [hep-ph/0305046] [SPIRES].

    ADS  Google Scholar 

  83. Y. Koide, Universal texture of quark and lepton mass matrices with an extended flavor 2 ↔ 3 symmetry, Phys. Rev. D 69 (2004) 093001 [hep-ph/0312207] [SPIRES].

    ADS  Google Scholar 

  84. A.S. Joshipura, Universal 2-3 symmetry, Eur. Phys. J. C 53 (2008) 77 [hep-ph/0512252] [SPIRES].

    ADS  Google Scholar 

  85. N. Nimai Singh, H. Zeen Devi and M. Patgiri, Phenomenology of neutrino mass matrices obeying μ-τ reflection symmetry, arXiv:0707.2713 [SPIRES].

  86. T. Baba and M. Yasue, Leptonic CP-violation Induced by Approximately mu-tau Symmetric Seesaw Mechanism, Phys. Rev. D 77 (2008) 075008 [arXiv:0710.2713] [SPIRES].

    ADS  Google Scholar 

  87. J.C. Gomez-Izquierdo and A. Perez-Lorenzana, Softly broken μ ↔ τ symmetry in the minimal see-saw model, Phys. Rev. D 77 (2008) 113015 [arXiv:0711.0045] [SPIRES].

    ADS  Google Scholar 

  88. F. Deppisch, H. Päs, A. Redelbach and R. Rückl, Constraints on SUSY seesaw parameters from leptogenesis and lepton flavor violation, Phys. Rev. D 73 (2006) 033004 [hep-ph/0511062] [SPIRES].

    ADS  Google Scholar 

  89. J.A. Aguilar-Saavedra et al., Supersymmetry parameter analysis: SPA convention and project, Eur. Phys. J. C 46 (2006) 43 [hep-ph/0511344] [SPIRES].

    Article  ADS  Google Scholar 

  90. J.R. Ellis and M. Raidal, Leptogenesis and the violation of lepton number and CP at low energies, Nucl. Phys. B 643 (2002) 229 [hep-ph/0206174] [SPIRES].

    Article  ADS  Google Scholar 

  91. A. Redelbach, SUSY Seesaw model and phenomenological implications for leptonic processes at low energies and leptogenesis, dissertation, University of Würzburg, Würzburg Germany (2004), available online: http://www.opus-bayern.de/uni-wuerzburg/volltexte/2004/1018/.

  92. A. Masiero, S.K. Vempati and O. Vives, Massive Neutrinos and Flavour Violation, New J. Phys. 6 (2004) 202 [hep-ph/0407325] [SPIRES].

    Article  ADS  Google Scholar 

  93. S. Antusch, E. Arganda, M.J. Herrero and A.M. Teixeira, Impact of theta(13) on lepton flavour violating processes within SUSY seesaw, JHEP 11 (2006) 090 [hep-ph/0607263] [SPIRES].

    Article  ADS  Google Scholar 

  94. E. Molinaro, S. Petcov and F. Plentinger, in preparation.

  95. F. del Aguila et al., Collider aspects of flavour physics at high Q, Eur. Phys. J. C 57 (2008) 183 [arXiv:0801.1800] [SPIRES].

    ADS  Google Scholar 

  96. M. Hirsch, J.W.F. Valle, W. Porod, J.C. Romao and A. Villanova del Moral, Probing minimal supergravity in type-I seesaw with lepton flavour violation at the LHC, Phys. Rev. D 78 (2008) 013006 [arXiv:0804.4072] [SPIRES].

    ADS  Google Scholar 

  97. J.N. Esteves et al., Flavour violation at the LHC: type-I versus type-II seesaw in minimal supergravity, JHEP 05 (2009) 003 [arXiv:0903.1408] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Plentinger.

Additional information

ArXiv ePrint: 1011.1404v1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deppisch, F.F., Plentinger, F. & Seidl, G. Lepton flavor violation in complex SUSY seesaw models with nearly tribimaximal mixing. J. High Energ. Phys. 2011, 4 (2011). https://doi.org/10.1007/JHEP01(2011)004

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2011)004

Keywords

Navigation