References
- 1.
M.W. Barsoum, The MN+1AXN Phass: A new class of solids: Thermodynamically stable nanolaminates, Prog. Sol. State Chem., 28, 201 (2000).
- 2.
R. Pampuch, J. Lis, L. Stobierski, and M. Tymkiewicz, Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 5, 283 (1989).
- 3.
M.W. Barsoum and T. El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc. 79, 1953 (1996).
- 4.
T. El-Raghy, M.W. Barsoum, A. Zavaliangos, and S.R. Kalidindi, Processing and mechanical properties of Ti3SiC2: II, effect of grain size and deformation temperature, J. Am. Ceram. Soc. 82, 2855 (1999).
- 5.
T. El-Raghy, A. Zavaliangos, M.W. Barsoum, and S.R. Kalidindi, Damage mechanisms around hardness indentations in Ti3SiC2, J. Am. Ceram. Soc. 80, 513 (1997).
- 6.
C.J. Gilbert, D.R. Bloyer, M.W. Barsoum, T. El-Raghy, A.P. Tomsia, and R.O. Ritchie, Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2, Scr. Mater. 42, 761 (2000).
- 7.
M. Radovic, M.W. Barsoum, T. El-Raghy, and S. Wiederhorn, Tensile creep of fine-grained (3-5 μm) Ti3SiC2 in the 1000–1200 °C temperature range, Acta Mater. 49, 4103 (2001).
- 8.
I.M. Low, S.K. Lee, B. Lawn, and M.W. Barsoum, Contact damage accumulation in Ti3SiC2, J. Amer. Ceram. Soc. 81, 225 (1998).
- 9.
Y. Kuroda, I.M. Low, M.W. Barsoum, and T. El-Raghy, Indentation responses and damage characteristics of hot isostatically pressed Ti3SiC2, J. Aust. Ceram. Soc. 37, 95 (2001).
- 10.
M.W. Barsoum and T. El-Raghy, Room temperature ductile carbides, Met. Mater. Trans. 30 A, 363 (1999).
- 11.
L. Farber, I. Levin, and M.W. Barsoum, HRTEM study of a lowangle boundary in plastically deformed Ti3SiC2, Philos. Mag. Lett. 79, 4103 (1999).
- 12.
M.W. Barsoum, L. Farber, and T. El-Raghy, Dislocations, kink banks and room temperature plasticity of Ti3SiC2, Met. Mat. Trans. 30A, 1727 (1999).
- 13.
M.W. Barsoum, M. Radovic, P. Finkel, and T. El-Raghy, Ti3SiC2 and ice, Appl. Phys. Lett. 79, 479 (2001).
- 14.
M.W. Barsoum, T. Zhen, S. Kalidindi, M. Radovic, and A. Murugaiah, Fully reversible dislocation-based compression deformation of Ti3SiC2 to 1 GPa, Nat. Mater. 2, 107 (2003).
- 15.
B.L. Adams, Orientation imaging microscopy: Emerging and future applications, Ultramicroscopy 67, 11 (1997).
- 16.
D.P. Field, Recent advances in the application of orientation imaging, Ultramicroscopy 67, 1 (1997).
- 17.
B.J. Kooi, R.J. Poppen, N.J.M. Carvalho, J.Th.M. De Hosson, and M.W. Barsoum, Ti3SiC2: A damage tolerant ceramic studied with nano-indentations and transmission electron microscopy, Acta. Mater. 51, 2859 (2003).
- 18.
D. Tabor, Hardness of Metals (Clarendon Press, Oxford, U.K., 1951).
- 19.
B.R. Lawn, N.P. Padture, H. Cai, and F. Guiberteau, Making ceramics “ductile”, Science 263, 1114 (1994).
- 20.
F. Guiberteau, N.P. Padture, and B.R. Lawn, Effect of grain size on hertzian contact damage in alumina, J. Am. Ceram. Soc. 77, 1825 (1994).
- 21.
J.S. Field and M.V. Swain, The indentation characterization of the mechanical properties of various carbon materials: Glassy carbon, coke, and pyrolytic Graphite, Carbon 34, 1357 (1996).
- 22.
M.V. Swain and J.S. Field, Investigations of the mechanical properties of two glassy carbon materials using pointed indenters, Philos. Mag. A. 74, 1085 (1996)
- 23.
M.V. Swain, Mater. Sci. Eng. Mechanical property characterization of small volumes of brittle materials with spherical tipped indenters, A253, 160 (1998).
- 24.
A.C. Fischer-Cripps, A review of analysis methods for sub-micron indentation testing, Vacuum 58, 569 (2000).
- 25.
N. Iwashita, M.V. Swain, J.S. Field, N. Ohta, and S. Bitoh, Elasto-plastic deformation of glass-like carbons heat-treated at different temperatures, Carbon 39, 1525 (2001).
- 26.
M. Sakai, Y. Nakano, and S. Shimizu, Elastoplastic indentation on heat-treated carbons, J. Am. Ceram. Soc. 85, 1522 (2002).
- 27.
B. Holm, R. Ahuja, and B. Johansson, Ab initio calculations of the mechanical properties of Ti3SiC2, Appl. Phys. Lett. 79, 1450 (2001).
- 28.
M.W. Barsoum, T. El-Raghy, C.J. Rawn, W.D. Porter, A. Payzant and, C. Hubbard, Thermal properties of Ti3SiC2, J. Phys. Chem. Solids 60, 429 (1999).
- 29.
F.C. Frank and A.N. Stroh, On the theory of kinking, Proc. Phys. Soc. 65, 811 (1952).
- 30.
J.M. Molina-Aldareguia, J. Emmerlich, J. Palmquist, U. Jansson, and L. Hultman, Kink formation around indents in laminated Ti3SiC2 thin films studied in the nanoscale, Scri. Mater. 49, 155 (2003).
- 31.
M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and Y. Gogotsi, Kink bands, nonlinear elasticity and nanoindentations in graphite, (accepted for publication in Carbon).
- 32.
M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and T. Zhen, Kinking nonlinear elastic solids, nanoindentations and geology, (submitted to Physical Review Letters).
- 33.
S. Myhra, J.W.B. Summers and E.H. Kisi, Ti3SiC2—A layered ceramic exhibiting ultra-low friction, Mater. Let. 39, 6 (1999).
- 34.
K.L. Johnson, Indentation Contact Mechanics (Cambridge University Press, Cambridge, 1985).
Author information
Affiliations
Corresponding author
Additional information
The online version of the original article can be found at https://doi.org/10.1557/JMR.2004.0148
Rights and permissions
About this article
Cite this article
Murugaiah, A., Barsoum, M.W., Kalidindi, S.R. et al. Erratum: Spherical nanoindentations and kink bands in Ti3SiC2. Journal of Materials Research 19, 2194–2203 (2004). https://doi.org/10.1007/BF03548933
Received:
Accepted:
Published:
Issue Date: