Applications of fluctuation spectroscopy to biomolecules

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Tanford C., Physical Chemistry of Macromolecules (Wiley, New York) 1961.

    Google Scholar 

  2. [2]

    Cantor C. R. and Schimmel P. R., Biophysical Chemistry, Vol. 1 (W.H. Freeman and Company, San Francisco) 1980.

    Google Scholar 

  3. [3]

    Bloomfield V. A., in Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, edited by R. Pecora (Plenum Press, N.Y.) 1985, pp. 363–416.

  4. [4]

    Schurr J. M. and Schmitz K. S., Annu. Rev. Phys. Chem., 37 (1986) 271.

    ADS  Article  Google Scholar 

  5. [5]

    Nie S. and Zare R. N., Annu. Rev. Biophys. Biomol. Struct., 26 (1994) 567.

    Article  Google Scholar 

  6. [6]

    Eigen M. and Rigler R., Proc. Natl. Acad. Sci. USA, 91 (1994) 5740.

    ADS  Article  Google Scholar 

  7. [7]

    Svoboda K. L. and Block S. M., Annu. Rev. Biophys. Biomol. Struct., 23 (1994) 247.

    Article  Google Scholar 

  8. [8]

    Berne B. J. and Pecora R., Dynamic Light Scattering (Wiley, New York) 1976.

    Google Scholar 

  9. [9]

    Chu B., Laser Light Scattering: Basic Principles and Practice, II edition (Academic press, San Diego) 1991.

    Google Scholar 

  10. [10]

    Cummins H. Z. and Swinney H. L., Light Beating Spectroscopy, in Progress in Optics, Vol. VIII, edited by E. Wolf (North-Holland Pub. Co.) 1970, pp. 135–197.

    Google Scholar 

  11. [11]

    Feynman R. P., Leighton R. B. and Sands M., The Feynman Lectures on Physics: mainly Mechanics, Radiation and Heat (Addison-Wesley Publishing Company, USA) 1977, Chapt. 31 and 32.R.

    Google Scholar 

  12. [12]

    Foerster D., Hydrodynamics fluctuations, Broken Symmetry, and Correlation Functions (Addison-Wesley Publishing Company, USA) 1983.

    Google Scholar 

  13. [13]

    Edman L., Mets U. and Rigler R., Proc. Natl. Acad. Sci. USA, 93 (1996) 6710.

    ADS  Article  Google Scholar 

  14. [14]

    Ha T., Enderle Th., Chemla D. S., Selvin P. R. and Weiss S., Phys. Rev. Lett., 77 (1996) 3979.

    ADS  Article  Google Scholar 

  15. [15]

    Schmitz K., An Introduction to Dynamic Light Scattering by Macromolecules (Academic Press, Boston) 1990.

    Google Scholar 

  16. [16]

    Feynman P., Leighton R. B. and Sands M., The Feynman Lectures on Physics: mainly Mechanics, Radiation and Heat (Addison-Wesley Publishing Company, USA) 1977.

    Google Scholar 

  17. [17]

    Goodman J. W., Statistical Properties of Laser Speckle Patterns, in Laser Speckle and Related Phenomena, edited by J. C. Dainty (Springer-Verlag, Berlin) 1975, pp. 9–75.

    Google Scholar 

  18. [18]

    Doi M. and Edwards S. F., Polymer Dynamics (Clarendon Press, Oxford, UK) 1986.

    Google Scholar 

  19. [19]

    Weitz D. A., Pine D. J., Pusey P. N. and Tough R. J. A., Phys. Rev. Lett., 63 (1989) 1747.

    ADS  Article  Google Scholar 

  20. [20]

    Ricka J., Appl. Opt., 32 (1993) 2860.

    ADS  Article  Google Scholar 

  21. [21]

    Gisler T., Rüger H., Egelhaft S. U., Tschumi J., Schurtenberger P. and Ricka J., Appl. Opt., 34 (1995) 3546.

    ADS  Article  Google Scholar 

  22. [22]

    Brown R. G. W., Appl. Opt., 26 (1987) 4846.

    ADS  Article  Google Scholar 

  23. [23]

    Brown R. G. W. and Jackson A. P., J. Phys. E, 20 (1987) 1503.

    ADS  Article  Google Scholar 

  24. [24]

    Dhadwal H. S., Wu C. and Chu B., Appl. Opt., 28 (1989) 4199.

    ADS  Article  Google Scholar 

  25. [25]

    Suparno S., Deurloo K., Stamtelopolous P., Srivastvam R. and Thomas J. C., Appl. Opt., 33 (1994) 7200.

    ADS  Article  Google Scholar 

  26. [26]

    Schurr J. M., Chem. Phys., 111 (1987) 55.

    MathSciNet  Article  Google Scholar 

  27. [27]

    Vink H., J. Chem. Soc., Faraday Trans. 1, 81 (1985) 1725.

    Article  Google Scholar 

  28. [28]

    Dhont J. K. G., An introduction of dynamics of colloids, in Studies in Interface Science, edited by D. Möbius and R. Miller (Elsevier, Amsterdam) 1996.

    Google Scholar 

  29. [29]

    Varshalovich D. A., Moskalev A. N. and Khersonskii V. K., Quantum Theory of Angular Momentum (World Scientific, Singapore) 1988.

    Google Scholar 

  30. [30]

    Chirico G. and Baldini G., J. Chem. Phys., 104 (1996) 6020.

    ADS  Article  Google Scholar 

  31. [31]

    Schmitz K. S. and Schurr J. M., Biopolymers, 12 (1973) 1543.

    Article  Google Scholar 

  32. [32]

    Patkowski A., Eimer W. and Dorfmüller Th., Biopolymers, 30 (1990) 93.

    Article  Google Scholar 

  33. [33]

    Paktowski A., Seils J., Buss F., Jockusch B. M. and Dorfmueller Th., Biopolymers, 30 (1990) 219.

    Article  Google Scholar 

  34. [34]

    Eimer W., Willaimson J. R., Boxer S. G. and Pecora R., Biochem., 29 (1990) 799.

    Article  Google Scholar 

  35. [35]

    Dubin S. B., Clark N. A. and Benedek G. B., J. Chem. Phys., 54 (1973) 5158.

    ADS  Article  Google Scholar 

  36. [36]

    Chirico G., Beretta S. and Baldini G., J. Chem. Phys., 110 (199) 2297.

  37. [37]

    Bar-Ziv R., Meller A., Tlusty T., Moses E., Stavans J. and Safran S. A., Phys. Rev. Lett., 78 (1997) 154.

    ADS  Article  Google Scholar 

  38. [38]

    Thompson N., Fluorescence Correlation Spectroscopy, in Topics in Fluorescence Spectroscopy, Vol. I, Techniques, edited by J. R. Lakowitz (Plenum Press, N.Y.) 1991.

    Google Scholar 

  39. [39]

    So P.T.C., French T., Yu W. M., Berland K. M., Dong C. Y. and Gratton E., Two-Photon Fluorescence Microscopy: Time-Resolved and Intensity Imaging, in Fluorescence Imaging Spectroscopy and Microscopy, edited by X. F. Wang and B. Herman, Chemical Analysis Series, Vol. 137 (John Wiley & Sons) 1996.

    Google Scholar 

  40. [40]

    Masters B. R., So P. T. and Gratton E., Biophys. J., 72 (1997) 2405.

    ADS  Article  Google Scholar 

  41. [41]

    Wilson T., Optical aspects of confocal microscopy, in Confocal Microscopy, edited by T. Wilson (Academic Press, London) 1990.

    Google Scholar 

  42. [42]

    Rigler R., Mets U., Windengren J. and Kask P., Eur. Biophys. J., 22 (1993) 169.

    Article  Google Scholar 

  43. [43]

    Berland K. M., So P. T. and Gratton E., Biophys. J., 68 (1995) 694.

    ADS  Article  Google Scholar 

  44. [44]

    König K., So O. T. C., Mantulin W. W., Tromberg B. J. and Gratton E., J. Miscrosc., 183 (1996) 197.

    Google Scholar 

  45. [45]

    Liu Y., Cheng D. K., Sonek G. J., Berns M. W. and Tromberg B. J., Appl. Phys. Lett., 65 (1994) 919.

    ADS  Article  Google Scholar 

  46. [46]

    Chen Y., Muller J., So S. and Gratton E., Biophys. J., 77 (1999) 553.

    Article  Google Scholar 

  47. [47]

    Kask P., Guenther R. and Axhausen P., Eur. Biophys. J., 25 (1997) 163.

    Article  Google Scholar 

  48. [48]

    Koppel D. E., Phys. Rev. A., 10 (1974) 1938.

    ADS  Article  Google Scholar 

  49. [49]

    Schwille P., Bieschke J. and Oehlenschlager F., Biophys. Chem., 66 (1997) 211.

    Article  Google Scholar 

  50. [50]

    Qian H., Biophys. Chem., 38 (1990) 49.

    Article  Google Scholar 

  51. [51]

    Qian H. and Elson E. L., Biophys. J., 57 (1990) 375.

    ADS  Article  Google Scholar 

  52. [52]

    Petersen N. O., Biophys. J., 49 (1986) 809.

    ADS  Article  Google Scholar 

  53. [53]

    Petersen N. O., Biophys. J., 49 (1986) 817.

    ADS  Article  Google Scholar 

  54. [54]

    Palmer A. G. III and Thompson N. L., Biophys. J., 52 (1987) 257.

    Article  Google Scholar 

  55. [55]

    St-Pierre P. R. and Petersen N. O., Biophys. J., 58 (1990) 503.

    Article  Google Scholar 

  56. [56]

    Saleh B., Photoelectronics statistics with applications to spectroscopy and optical communications, Springer Series in Optical Science (Springer Verlag, Berlin) 1978.

    Google Scholar 

  57. [57]

    Schmitz K. S. and Pecora R., Biopolymers, 14 (1975) 521.

    Article  Google Scholar 

  58. [58]

    Schmidt R. L., Biopolymers, 12 (1973) 1427.

    Article  Google Scholar 

  59. [59]

    Lin S-C., Lee W. I. and Schurr J. M., Biopolymers, 17 (1978) 1041.

    Article  Google Scholar 

  60. [60]

    Rouse P. E., J. Chem. Phys., 21 (1955) 1272.

    ADS  Article  Google Scholar 

  61. [61]

    Zimm B. H., J. Chem. Phys., 24 (1956) 269.

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    Schmidt R. L., Boyle J. A. and Mayo J. A., Biopolymers, 16 (1977) 317.

    Article  Google Scholar 

  63. [63]

    Wun K. L. and Prins W., Biopolymers, 14 (1975) 111.

    Article  Google Scholar 

  64. [64]

    Lin S. C., Thomas J. C., Allison S. A. and Schurr J. M., Biopolymers, 20 (1981) 209.

    Article  Google Scholar 

  65. [65]

    Jolly D. and Eisenberg H., Biopolymers, 15 (1976) 61.

    Article  Google Scholar 

  66. [66]

    Chen F. C, Yeh A., Chu B., J. Chem. Phys., 66 (1977) 1290.

    ADS  Article  Google Scholar 

  67. [67]

    Pecora R., J. Chem. Phys., 43 (1965) 1562.

    ADS  Article  Google Scholar 

  68. [68]

    Pecora R., J. Chem. Phys., 49 (1968) 1036.

    ADS  Article  Google Scholar 

  69. [69]

    Pecora R., J. Chem. Phys., 48 (1968) 4126.

    ADS  Article  Google Scholar 

  70. [70]

    Caloin M., Wilhelm B. and Daune M., Biopolymers, 16 (1977) 2091.

    Article  Google Scholar 

  71. [71]

    Thomas J. C. and Schurr J. M., Opt. Lett., 4 (1979) 222.

    ADS  Article  Google Scholar 

  72. [72]

    Thomas J. C., Allison S. A., Schurr J. M. and Holder R. D., Biopolymers, 19 (1980) 1451.

    Article  Google Scholar 

  73. [73]

    Vieira J. and Messing J., Gene, 19 (1982) 259.

    Article  Google Scholar 

  74. [74]

    Lewis R. J., Huang J. H. and Pecora R., Macromolecules, 18 (1985) 944.

    ADS  Article  Google Scholar 

  75. [75]

    Langowski J., Giesen U. and Lehmann C., Biophys. Chem., 25 (1986) 191.

    Article  Google Scholar 

  76. [76]

    Aragon S. R. and Pecora R., J. Chem. Phys., 66 (1977) 2506.

    ADS  Article  Google Scholar 

  77. [77]

    Aragon S. R. and Pecora R., Macromolecules, 18 (1985) 1868.

    ADS  Article  Google Scholar 

  78. [78]

    Langowski J., Biophys. Chem., 27 (1987) 263.

    Article  Google Scholar 

  79. [79]

    Langowski J., Fujimoto B. S., Wemmer D. E., Benight A. S., Drobny G., Shibata J. H. and Schurr J. M., Biopolymers, 24 (1985) 1023.

    Article  Google Scholar 

  80. [80]

    Langowski J. and Giesen U., Biophys. Chem., 34 (1989) 9.

    Article  Google Scholar 

  81. [81]

    Berg O. G., Biopolymers, 18 (1979) 2861.

    Article  Google Scholar 

  82. [82]

    Soda K., Macromolecules, 17 (1984) 2365.

    ADS  Article  Google Scholar 

  83. [83]

    Seils J. and Dorfmüller Th., 31 (1991) 813.

  84. [84]

    Chirico G. and Baldini G., J. Mol. Liquids, 41 (1989) 327.

    Article  Google Scholar 

  85. [85]

    Kuil M. E., van Mourik F., Burger W. and van Grondelle R., Biophys. Chem., 32 (1988) 211.

    Article  Google Scholar 

  86. [86]

    Sorlie S. and Pecora R., Macromolecules, 21 (1988) 1437.

    ADS  Article  Google Scholar 

  87. [87]

    Lewis R. J., Pecora R. and Eden D., Macromolecules, 19 (1986) 134; 20 (1987) 2579.

    ADS  Article  Google Scholar 

  88. [88]

    Allison S. A., Sorlie S. S. and Pecora R., Macromolecules, 23 (1990) 1110

    ADS  Article  Google Scholar 

  89. [88a]

    Sorlie S. and Pecora R., Macromolecules, 23 (1990) 487.

    ADS  Article  Google Scholar 

  90. [89]

    Langowski J., Kremer W. and Kapp U., Methods Enzymol., 211 (1992) 430.

    Article  Google Scholar 

  91. [90]

    Hammermann M., Steinmaier C., Merlitz H., Kapp U., Waldeck W., Chirico G. and Langowski J., Biophys. J., 73 (1997) 2674.

    Article  Google Scholar 

  92. [91]

    Gebe J. A., Delrow J. J., Heath P. J., Fujimoto B. S., Stewart D. W. and Schurr J. M., J. Mol. Biol., 262 (1996) 105.

    Article  Google Scholar 

  93. [92]

    Wilson R. W. and Bloomfield V. A., 18 (1979) 2192.

  94. [93]

    Boles T. C., White J. H. and Cozzarelli N. R., J. Mol. Biol., 213 (1990) 825.

    Article  Google Scholar 

  95. [94]

    Vologodskii A. V. and Cozzarelli N. R., Annu. Rev. Biophys. Biomol. Struct., 23 (1994) 609.

    Article  Google Scholar 

  96. [95]

    Bednar J., Furrer P., Stasiak A. and Dubochet J., J. Mol. Biol., 235 (1994) 825.

    Article  Google Scholar 

  97. [96]

    G. Chirico, S. Beretta and G. Baldini, Biophys. Chem., 45 (1992) 101.

    Article  Google Scholar 

  98. [97]

    Wilson D. A., Price H. L., Henderson J., Hanlon S. and Benight A. S., Biopolymers, 29 (1990) 357

    Article  Google Scholar 

  99. [97a]

    Benight A. S., Wilson D. H., Budzynski D. M. and Goldstein R. F., Biochimie, 73 (1991) 143.

    Article  Google Scholar 

  100. [98]

    Chirico G., Lunelli L. and Baldini G., Biophys. Chem., 38 (1990) 201.

    Article  Google Scholar 

  101. [99]

    Song L., Allison S. A. and Schurr J. M., Biopolymers, 29 (1990) 1773.

    Article  Google Scholar 

  102. [100]

    Song L., Kim U.-S., Wilcoxon J. and Schurr J. M., Biopolymers, 31 (1991) 547.

    Article  Google Scholar 

  103. [101]

    Langowski J., Kapp U., Klenin K. and Vologodskii A., Biopolymers, 34 (1994) 639.

    Article  Google Scholar 

  104. [102]

    Kremer W., Klenin K., Langowski J. and Diekmann S., EMBO J., 12 (1993) 4407.

    Article  Google Scholar 

  105. [103]

    Chirico G. and Baldini G., J. Chem. Phys., 104 (1996) 6015.

    ADS  Google Scholar 

  106. [104]

    Chirico G. and Langowski J., J. Chem.Phys., 88 (1991) 2561.

    Google Scholar 

  107. [105]

    Wada A., Suda N., Tsuda T. and Soda K., J. Chem. Phys., 50 (1969) 31.

    ADS  Article  Google Scholar 

  108. [106]

    Wada A., Tanaka T., Soda K. and Suda N., J. Chem. Phys., 50 (1969) 31.

    ADS  Article  Google Scholar 

  109. [107]

    Schmitz K. S. and Schurr J. M., Biopolymers, 12 (1973) 1021.

    Article  Google Scholar 

  110. [108]

    Patkowski A., Eimer W. and Dorfmüller Th., Biopolymers, 30 (1990) 975.

    Article  Google Scholar 

  111. [109]

    Patkowski A., Jen S. and Chu B., Biopolymers, 17 (1978) 2643.

    Article  Google Scholar 

  112. [110]

    Thomas J. C., Schurr J. M. and Hare D. R., Biochem., 23 (1984) 5407.

    Article  Google Scholar 

  113. [111]

    Beretta S., Chirico G., Baldini G., Spinozzi F., Maccioni E. and Mariani P., Macromolecules, 32 (1999) 6128.

    ADS  Article  Google Scholar 

  114. [112]

    Beretta S., Chirico G., Arosio D. and Baldini G., J. Chem. Phys., 106 (1997) 8427.

    ADS  Article  Google Scholar 

  115. [113]

    Kuehner D. E., Heyer C., Rämsch C., Fornefeld U. M., Blanch H. W. and Prausnitz J. M., Biophys. J., 73 (1997) 3211.

    Article  Google Scholar 

  116. [114]

    Pusey P. N. and Tough R. J. A., in Dynamic Light Scattering, edited by R. Pecora (Plenum Press, New York) 1985, pp. 85–179.

  117. [115]

    Corti M. and Degiorgio V., J. Phys. Chem., 85 (1981) 711.

    Article  Google Scholar 

  118. [116]

    Phillies G. D. J., J. Phys. Chem., 99 (1995) 4265.

    Article  Google Scholar 

  119. [117]

    Felderhof B. U., J. Phys. A, 11 (1978) 929.

    ADS  Article  Google Scholar 

  120. [118]

    Belloni L. and Drifford M., J. Phys. Lett., 46 (1985) L–1183.

    Google Scholar 

  121. [119]

    Schmitz K. S., An Introduction to Dynamic Light Scattering by Macromolecules (Academic Press) 1990, Chapt. 7.

    Google Scholar 

  122. [120]

    Schurr J. M., Chem. Phys., 45 (1980) 119.

    Article  Google Scholar 

  123. [121]

    Hernandez-Contreras M., Alarcon-Waess O. and Medina-Noyola M., J. Chem. Phys., 106 (1997) 2492.

    ADS  Article  Google Scholar 

  124. [122]

    Felderhof B. U., Physica A, 89 (1977) 373.

    ADS  Article  Google Scholar 

  125. [123]

    Phillies G. D. J., J. Chem. Phys., 77 (1982) 2623.

    ADS  Article  Google Scholar 

  126. [124]

    Mazur P. and van Saarloos W., Physica A, 115 (1982) 21.

    ADS  MathSciNet  Article  Google Scholar 

  127. [125]

    Batchelor J. K., J. Fluid. Mech., 74 (1976) 1.

    ADS  MathSciNet  Article  Google Scholar 

  128. [126]

    Goldstein B. and Zimm B. H., J. Chem. Phys., 54 (1971) 4408.

    ADS  Article  Google Scholar 

  129. [127]

    Pyun C. W. and Fixman M., J. Chem. Phys., 41 (1964) 937.

    ADS  Article  Google Scholar 

  130. [128]

    Chirico G., Placidi M. and Cannistraro S., J. Phys. Chem., 103 (1999) 1746.

    Article  Google Scholar 

  131. [129]

    Schurr J. M., Chem. Phys. Lett., 110 (1984) 668.

    ADS  Article  Google Scholar 

  132. [130]

    Cruz de Leon G., Medina-Noyola M., Alarcon-Waess O. and Ruiz-Estrada H., Chem. Phys. Lett., 207 (1993) 294.

    ADS  Article  Google Scholar 

  133. [131]

    Nägele G., Phys. Rep., 272 (1996) 215.

    ADS  Article  Google Scholar 

  134. [132]

    Neal D. G., Purich D. and Cannel D. S., J. Chem. Phys., 80 (1984) 3469.

    ADS  Article  Google Scholar 

  135. [133]

    Phillies G. D., J. Chem. Phys., 77 (1982) 2623.

    ADS  Article  Google Scholar 

  136. [134]

    Piazza R., Peyre V. and DeGiorgio V., Phys. Rev. E, 58 (1998) 2733.

    ADS  Article  Google Scholar 

  137. [135]

    Mahadevan H. and Hall C. K., Am. Inst. Chem. Eng. J., 38 (1992) 573.

    Article  Google Scholar 

  138. [136]

    Baxter R. J., J. Chem. Phys., 49 (1968) 2770.

    ADS  Article  Google Scholar 

  139. [137]

    Raj T. and Flygare W. H., Biochem., 13 (1974) 3336.

    Article  Google Scholar 

  140. [138]

    Haas D. D. and Ware B. R., Biochem., 17 (1978) 4946.

    Article  Google Scholar 

  141. [139]

    Hall R. S., Oh Y. S. and Johnson Jr., J. Phys.Chem., 84 (1980) 756.

    Article  Google Scholar 

  142. [140]

    Anderson J. L. and Reed C.C., J. Chem. Phys., 64 (1976) 3240.

    ADS  Article  Google Scholar 

  143. [141]

    Anderson J. L., Rauh F. and Morales A., J. Chem. Phys., 82 (1978) 608.

    Article  Google Scholar 

  144. [142]

    Ackerson B. J., J. Chem. Phys., 64 (1976) 242.

    ADS  Article  Google Scholar 

  145. [143]

    Ackerson B. J., J. Chem. Phys., 69 (1978) 684.

    ADS  Article  Google Scholar 

  146. [144]

    Phillies G. D. J., J. Chem. Phys., 60 (1974) 976; 983.

    ADS  Article  Google Scholar 

  147. [145]

    Belloni L. and Spalla O., J. Chem. Phys., 107 (1997) 465.

    ADS  Article  Google Scholar 

  148. [146]

    Tivant P., Turq P., Drifford M., Magdelenat H. and Menez R., Biopolymers, 22 (1983) 643.

    Article  Google Scholar 

  149. [147]

    Weissman M. B. and Marque J., J. Chem. Phys., 73 (1980) 3999.

    ADS  Article  Google Scholar 

  150. [148]

    Hirakawa F., Yoshino S., Era S., Kuwatra K., Sogmai M. and Imai N., Biophys. Chem., 28 (1987) 253.

    Article  Google Scholar 

  151. [149]

    Doi M., Shimada T. and Okano K., J. Chem. Phys., 88 (1988) 4070.

    ADS  Article  Google Scholar 

  152. [150]

    Wang L., Garner M. M. and Yu H., Macromolecules, 24 (1991) 2368.

    ADS  Article  Google Scholar 

  153. [151]

    Lunelli L. and Baldini G., Phys. Rev. Lett., 70 (1993) 513.

    ADS  Article  Google Scholar 

  154. [152]

    Xia J., Aerts T., Donceel K. and Clauwaert J., Biophys. J., 66 (1994) 861.

    ADS  Article  Google Scholar 

  155. [153]

    Thompson N. L., Fluorescence correlation spectroscopy, in Topics in Fluorescence Spectroscopy, Vol. 1, edited by J. R. Lackowitz (Plenum Press, New York) 1991.

    Google Scholar 

  156. [154]

    Magde D. and Elson E. L., Biopolymers, 13 (1974) 29.

    Article  Google Scholar 

  157. [155]

    Elson E. L. and Magde D., Biopolymers, 13 (1974) 1.

    Article  Google Scholar 

  158. [156]

    Koppel D. E., Axelrod D., Schlessinger J., Elson E. L. and Webb W. W., Biophys. J., 16 (1976) 1315.

    Article  Google Scholar 

  159. [157]

    Rigler R., Grasselli P. and Ehrenberg M., Physica Scripta, 19 (1979) 486.

    ADS  Article  Google Scholar 

  160. [158]

    Eherneberg M. and Rigler R., Chem. Phys., 4 (1974) 390.

    Article  Google Scholar 

  161. [159]

    Aragon S. R. and Pecora R., J. Chem. Phys., 64 (1976) 1791.

    ADS  Article  Google Scholar 

  162. [160]

    Petersen N. O. and Elson E. L., Methods Enzymol., 130 (1986) 454.

    Article  Google Scholar 

  163. [161]

    Thompson N. L. and Axelrod D., Biophys. J., 43 (1983) 103.

    Article  Google Scholar 

  164. [162]

    Icenogle R. D. and Elson E. L., Biopolymers 22 (1983) 1919.

    Article  Google Scholar 

  165. [163]

    Icenogle R. D. and Elson E. L., Biopolymers, 22 (1983) 1949.

    Article  Google Scholar 

  166. [164]

    Kingler J. and Friedrich T., Biophys. J., 73 (1997) 2195.

    Article  Google Scholar 

  167. [165]

    Enderlein J. and Köllner M., Bioimaging, 6 (1998) 3.

    Article  Google Scholar 

  168. [166]

    Schwille P., Bieschke J. and Oehlenschläger F., Biophys. Chem., 66 (1997) 211.

    Article  Google Scholar 

  169. [167]

    Kettling U., Koltermann A., Schwille P. and Eigen M., Proc. Natl. Acad. Sci. USA (Biochemistry), 95 (1998) 1416.

    ADS  Article  Google Scholar 

  170. [168]

    Abney J. R., Scalettar B. E. and Hackenbrock C. R., Biophys. J., 58 (1990) 261.

    Article  Google Scholar 

  171. [169]

    Hill T. L., Statistical Mechanics (McGraw-Hill Book Co., New York) 1956, 432 pp.

    Google Scholar 

  172. [170]

    Phillies G. D. J., Biopolymers, 14 (1975) 499.

    Article  Google Scholar 

  173. [171]

    Andries C. and Clauwaert J., Biophys. J., 47 (1985) 591.

    ADS  Article  Google Scholar 

  174. [172]

    Andries C., Guedens W., Clauwaert J. and Geerts H., Biophys. J., 43 (1983) 345.

    Article  Google Scholar 

  175. [173]

    Weissmann M., Schindler H. and Feher G., Proc. Natl. Acad. Sci. USA, 73 (1976) 2776.

    ADS  Article  Google Scholar 

  176. [174]

    Meyer T. and Schindler H., Biophys. J., 54 (1988) 983.

    Article  Google Scholar 

  177. [175]

    Quian H. and Elson E. L., Proc. Natl. Acad. Sci. USA., 87 (1990) 5479.

    ADS  Article  Google Scholar 

  178. [176]

    Palmer A. G. III and Thompson N. L., Rev. Sci. Instrum., 60 (1989) 624.

    ADS  Article  Google Scholar 

  179. [177]

    Palmer A. G. III and Thompson N. L., Appl. Opt., 28 (1989) 1214.

    ADS  Article  Google Scholar 

  180. [178]

    Whitten W. B. and Ramsey J. M., Appl. Spectr., 46 (1992) 1587.

    ADS  Article  Google Scholar 

  181. [179]

    Fries J. R., Brand L., Eggeling C., Köllner M. and Seidel C. A. M., J. Phys. Chem. A, 102 (1998) 6601.

    Article  Google Scholar 

  182. [180]

    Koppel D. E., Morgan F., Cowan A. E. and Carson J. H., Biophys. J., 66 (1994) 502.

    ADS  Article  Google Scholar 

  183. [181]

    Denk W., Strickler J. H. and Webb W. W., Science, 248 (1990) 73.

    ADS  Article  Google Scholar 

  184. [182]

    Malak H., Castellano F. N., Gryczynski I. and Lakowicz J. R., Biophys. Chem., 67 (1997) 1, 35.

    Article  Google Scholar 

  185. [183]

    So P. T., König K., Berland K., Dong C. Y., French T., Bühler C., Ragan T. and Gratton E., Cell. Mol. Biol., 44 (1998) 771.

    Google Scholar 

  186. [184]

    Widengren J., Mets Ü. and Rigler R., J. Phys. Chem., 99 (1995) 13368.

    Article  Google Scholar 

  187. [185]

    Eggeling C., Widengren J., Rigler R. and Seidel C. A. M., Anal. Chem., 70 (1998) 2651.

    Article  Google Scholar 

  188. [186]

    Ashkin A., Science, 210 (1980) 1081.

    ADS  Article  Google Scholar 

  189. [187]

    Osborne M. A., Balasubramanian S., Furey W. S. and Klenerman D., J. Phys. Chem. B, 102 (1998) 3160.

    Article  Google Scholar 

  190. [188]

    Starchev K., Zhang J. and Buffle J., J. Colloid Interface Sci., 203 (1998) 189.

    ADS  Article  Google Scholar 

  191. [189]

    DeGennes P. G., Science, 276 (1997) 1999.

    Article  Google Scholar 

  192. [190]

    Tskhovrebova L., Trinick J., Sleep J. A. and Simmons R. M., Nature, 387 (1997) 308.

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Chirico.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chirico, G., Groppi, C. Applications of fluctuation spectroscopy to biomolecules. Riv. Nuovo Cim. 23, 1–37 (2000). https://doi.org/10.1007/BF03548886

Download citation