Children are Different: Environmental Contaminants and Children–s Health

Les enfants sont différents : les contaminants de l’environnement et la santé des enfants


Although the impact of environmental contaminants on human health has been widely studied, few reports in the Canadian literature have focussed on the specific vulnerability of children. Because of their rapid growth, physiologic and metabolic immaturity, the fetus and child are often at increased risk from toxic substances in their environments. Furthermore, greater air, food and fluid intakes relative to body weight compared with the adult, increase the child–s potential for excessive exposures. The crawling stage of infancy, the play patterns and short stature of toddlers also serve to increase their exposure to dust and heavy and volatile substances which accumulate near the floor. This article provides an overview of some of the developmental physiologic, anatomic and behavioural features of the fetus, infant and child which increase their vulnerability to environmental contaminants in comparison with adults. Specific examples are given.


Bien que l’impact des contaminants de l’environnement sur la santé humaine ait fait l’objet de nombreuses études, peu d’entre elles publiées au Canada ont porté en priorité sur la vulnérabilité spécifique des enfants. En raison de leur croissance rapide, de leur immaturité physiologique et métabolique, le foetus et l’enfant courent souvent des risques plus graves face aux substances toxiques présentes dans leur environnement. En outre, leur plus grande absorption d’air, de nourriture et de liquide par rapport à leur masse corporelle par comparaison avec les adultes augmente le potentiel d’expositions excédentaires des enfants. Vu leurs jeux, leur petite taille et le fait qu’ils rampent pendant les premières années, les jeunes enfants sont davantage exposés à la poussière et aux substances lourdes et volatiles qui s’accumulent près du sol. Cet article présente une vue d’ensemble des caractéristiques du développement physiologique, anatomique et comportemental du foetus, du nourrisson et de l’enfant qui les rendent plus vulnérables aux contaminants de l’environnement par comparaison avec les adultes. Des exemples spécifiques sont donnés.

This is a preview of subscription content, log in to check access.


  1. 1.

    Scammon RE, Calkins LA. The Development and Growth of the External Dimensions of the Human Body in the Fetal Period. Minneapolis: University of Minnesota Press, 1929.

    Google Scholar 

  2. 2.

    Tanner JM, Whitehouse RH, Takaishi M. Standards from birth to maturity for height, weight, height velocity and weight velocity. Part, II. British Children, 1965. Arch Dis Child 1966;41:613–35.

    CAS  Article  Google Scholar 

  3. 3.

    Shore R. Rethinking the Brain: New Insights into Early Development. Report of a Conference entitled: Brain Development in Young Children. New Frontiers for Research, Policy and Practice. New York: Families and Work Institute, 1997.

    Google Scholar 

  4. 4.

    Huttenlocher, PR. Synapse elimination and plasticity in developing human cerebral cortex. Am J Mental Deficiency 1984;88:488–96.

    CAS  Google Scholar 

  5. 5.

    Lauder, JM. Neurotransmitters as morphogens. Prog Brain Res 1988;73:365–87.

    CAS  Article  Google Scholar 

  6. 6.

    Islam MS, Schilpkoter, HW. Reversible fraction of airway resistance in healthy children of different areas with different levels of atmospheric pollutants. Exper Path 1989;27:23–26.

    Article  Google Scholar 

  7. 7.

    Widdowson EM, Dickerson JWT. Chemical composition of the body. In: Comer CL, Bromner F (Eds.), Mineral Metabolism. New York: Academic Press, 1964.

    Google Scholar 

  8. 8.

    Plunkett LM, Turnbull D, Rodricks, JV. Differences between adults and children affecting exposure assessment. In: Guzelian P, Henry C, Olin SS (Eds.), Similarities and Differences Between Children and Adults: Implications for Risk Assessment. Washington, DC: ILSI Press, 1992.

    Google Scholar 

  9. 9.

    Adolfini M. The development of the bloodcerebrospinal fluid-brain barrier. Dev Med Child Neurol 1985;27:532–37.

    Article  Google Scholar 

  10. 10.

    Pinto RE, Bartley W. The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem J 1969;112:109–15.

    CAS  Article  Google Scholar 

  11. 11.

    Nebert DW, Gonzales, FJ. P450 genes: Structure, evolution and regulation. Ann Rev Biochem 1987;56:945–93.

    CAS  Article  Google Scholar 

  12. 12.

    Brion LP, Bernstein J, Spitzer A. Kidney and urinary tract. In: Fanaroff AA, Martin RJ (Eds.), Neonatal-Perinatal Medicine. Diseases of the Fetus and Infant Sixth Ed. New York: Mosby, 1997;1564–636.

    Google Scholar 

  13. 13.

    Aranda JV, Collinge JM, Zinman R, Watters G. Maturation of caffeine elimination in infancy. Arch Dis Child 1979;54:946–49.

    CAS  Article  Google Scholar 

  14. 14.

    Bucuvalis JC, Balistreri, WF. The neonatal gastro intestinal tract. In: Fanaroff AA, Martin RJ. Neonatal-Perinatal Medicine. Diseases of the Fetus and Infant Sixth Ed. New York: Mosby, 1997;1288–344.

    Google Scholar 

  15. 15.

    Udall JN, Pang K, Fritze L, Walker, WA. Development of G-I mucosal barrier. 1. The effect of age on intestinal permeability to macromolecules. Pediatr Res 1981;15:241–44.

    CAS  Article  Google Scholar 

  16. 16.

    Bushnell PJ, DeLuca, HF. Lactose facilitates the absorption of lead in weanling rats. Science 1980;211:61–63.

    Article  Google Scholar 

  17. 17.

    Rodier, PM. Developing brain as a target of toxicity. Environ Health Perspect 1995;103(Suppl. 6):73–76.

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Otako M, Schull, WJ. In utero exposure to abomb radiation and mental retardation: A reassessment. Br J Radiol 1984;57:409–14.

    Article  Google Scholar 

  19. 19.

    Jacobson JL, Jacobson SW, Humphrey HEB. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J Pediatr 1990;116:38–45.

    CAS  Article  Google Scholar 

  20. 20.

    Colborn T. Pesticide — How research has succeeded and failed to translate science into policy: Endocrinological effects on wildlife. Environ Health Perspect 1995;103(Suppl. 6):81–86.

    Google Scholar 

  21. 21.

    Carlsen E, Giwercman A, Keiding N, Skakkeback, NE. Evidence for decreasing quality of semen during the past 50 years. Br Med J 1992;304:609–13.

    Article  Google Scholar 

  22. 22.

    Wolff, MS. Pesticides — How research has succeeded and failed in informing public policy: DDT and the link with breast cancer. Environ Health Perspect 1995;103(Suppl. 6):87–91.

    Google Scholar 

  23. 23.

    Hanvey L, Avard D, Graham I, et al. Hospitalisation for asthma age 1 to 4 years. In: The Health of Canada’s Children Second Edition. Ottawa: Canadian Institute of Child Health, 1994;49.

    Google Scholar 

  24. 24.

    Boushey HA, Fahy, JV. Basic mechanisms in asthma. Environ Health Perspect 1995;103(Suppl. 6):229–33.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Levitt C, Hanvey L, Avard D, et al. Survey of Routine Maternity Care Practices in Canadian Hospitals. Ottawa: Health Canada and Canadian Institute of Child Health, 1995;72–73.

    Google Scholar 

  26. 26.

    Funatsu I, Yamashita F, Ito Y, et al. Polychlorobiphenyls (PCB)-induced fetopathy. I. Clinical observations. Kierume Med J 1972;19:43–51.

    CAS  Article  Google Scholar 

  27. 27.

    Fries, GF. The PBB episode in Michigan: An overall appraisal. CRC Crit Rev Toxicol 1979;16:105–56.

    Article  Google Scholar 

  28. 28.

    Matsumoto M, Koya G, Takeuchi T. Fetal Minamata disease. J Neuropathol Exp Neurol 1965;24:563–74.

    CAS  Article  Google Scholar 

  29. 29.

    Amin-Zaki L, Majeed MA, Greenwood MR, et al. Methyl mercury poisoning in the Iraqi suckling infant: A longitudinal study over 5 years. J Appl Toxicol 1981;1:201–14.

    Article  Google Scholar 

  30. 30.

    Sonawane, BR. Chemical contaminants in human milk: An overview. Environ Health Perspect 1995;103(Suppl. 6):197–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Trapp M, Bauklon V, Bohne CHC, Heeschen W. Pollutants in human follicular fluid. Fert Steril 1984;42:146–48.

    CAS  Article  Google Scholar 

  32. 32.

    Fenske, RA. Differences in exposure potential for adults and children following residential insecticide applications. In: Guzelian PS, Henry CJ, Olin SS (Eds.), Similarities and Differences Between Children and Adults: Implications for Risk Assessment. Washington: ILSI Press, 1992;214–25.

    Google Scholar 

  33. 33.

    Roberts JW, Dickey P, Gilbert SG, et al. Reducing the total exposure of preschool children: Control of major sources of pollutants. In: Proceedings of the Northwest International Section, Air and Waste Management Assoc. Seattle, 1996;1–12.

    Google Scholar 

  34. 34.

    Miller DJ, Day, JH. Indoor mould exposure: Epidemiology, consequences and immunology. Can J Allergy Clin Immunol 1997;2:25–32.

    Google Scholar 

  35. 35.

    Weaver VM, Davoli CT, Murphy SE, et al. Environmental tobacco smoke exposure in innercity children. Cancer Epid Biomarkers and Prevention 1996;5:135–37.

    CAS  Google Scholar 

  36. 36.

    Weaver VM, Davoli CT, Heller PJ, et al. Benzene exposure, assessed by urinary trans, trans-muconic acid, in urban children with elevated blood lead levels. Environ Health Perspect 1996;104:318–22.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Dr Graham W. Chance MB, FRCP, FRCPC.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chance, G.W., Harmsen, E. Children are Different: Environmental Contaminants and Children–s Health. Can J Public Health 89, S10–S15 (1998).

Download citation