Skip to main content
Log in

Linking Childhood Obesity to the Built Environment: A Multi-level Analysis of Home and School Neighbourhood Factors Associated With Body Mass Index

  • Quantitative Research
  • Published:
Canadian Journal of Public Health Aims and scope Submit manuscript

Abstract

Objectives

This study examines environmental factors associated with BMI (body mass index) levels among adolescents with the aim of identifying potential interventions for reducing childhood obesity.

Methods

Students (n=1,048) aged 10–14 years at 28 schools in London, ON, completed a survey providing information on age, sex, height, weight, home address, etc., which was used to construct age-sex adjusted BMI z-scores. The presence of recreation opportunities, fast-food outlets and convenience stores was assessed using four areal units around each participant’s home and school neighbourhood: “circular buffers” encompassing territory within a straight-line distance of 500 m and 1000 m; and “network buffers” of 500 m and 1000 m measured along the street network. School neighbourhoods were also assessed using school-specific “walksheds”. Multilevel structural equation modeling techniques were employed to simultaneously test the effects of school-environment (Level 2) and home-environment (Level 1) predictors on BMI z-scores.

Results

Most participants (71%) had a normal BMI, 16.9% were overweight, 7.6% were obese, and 4.6% were considered underweight. Multilevel analyses indicated that built environment characteristics around children’s homes and schools had a modest but significant effect on their BMI. The presence of public recreation opportunities within a 500 m network distance of home was associated with lower BMI z-scores (p<0.05), and fast-food outlets within the school walkshed was associated with higher BMI z-scores (p<0.05).

Conclusion

Interventions and policies that improve children’s access to publicly provided recreation opportunities near home and that mitigate the concentration of fast-food outlets close to schools may be key to promoting healthy lifestyles and reducing childhood obesity.

Résumé

Objectifs

Notre étude porte sur les facteurs environnementaux associés à l’IMC (indice de masse corporelle) d’adolescents en vue de cerner des interventions possibles pour réduire l’obésité infantile.

Méthode

Des élèves (n=1 048) de 10 à 14 ans fréquentant 28 écoles de London, en Ontario, ont rempli un questionnaire sur leur âge, leur sexe, leur taille, leur poids, leur adresse personnelle, etc., lequel a servi à construire des écarts Z ajustés selon l’âge et le sexe pour l’IMC. La présence de possibilités de loisir, d’établissements de restauration rapide et de dépanneurs a été évaluée à l’aide de quatre unités de surface autour du domicile et du quartier scolaire de chaque participant: des «zones tampons circulaires» englobant le territoire sur une distance entre 500 et 1000 m en ligne droite; et des «zones tampon de réseau» de 500 à 1000 m mesurées le long du réseau des rues. Les quartiers scolaires ont aussi été évalués à l’aide des «bassins de marche» propres à l’école. Une modélisation multiniveaux par équations structurelles a servi à évaluer simultanément les effets de prédicteurs des écarts Z de l’IMC liés à l’environnement scolaire (niveau 2) et au milieu de vie (niveau 1).

Résultats

La plupart des participants (71 %) avaient un IMC normal, 16,9 % étaient en surpoids, 7,6 % étaient obèses, et 4,6 % étaient considérés comme étant de poids insuffisant. Des analyses multiniveaux ont montré que les caractéristiques du milieu bâti autour du domicile et de l’école des enfants avaient un effet mineur mais significatif sur leur IMC. La présence d’installations de loisir publiques dans un réseau de 500 m du domicile était associée à des écarts Z d’IMC inférieurs (p<0,05), et la présence d’établissements de restauration rapide dans le bassin de marche de l’école était associée à des écarts Z d’IMC supérieurs (p<0,05).

Conclusion

Les interventions et les politiques qui améliorent l’accès des enfants à des installations de loisir publiques près de chez eux et qui atténuent la concentration des établissements de restauration rapide près des écoles pourraient être la clé du succès pour promouvoir les modes de vie sains et réduire l’obésité infantile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Analytic Studies and Reports. Nutrition: Findings from the Canadian Community Health Survey, Issue 1. Measured Obesity: Overweight Canadian Children and Adolescents. Ottawa, ON: Statistics Canada, 2005.

    Google Scholar 

  2. Tremblay MS, Shields M, Laviolette M, Craig CL, Janssen I, Grober SC. Fitness of Canadian children and youth: Results from the 2007–2009 Canadian Health Measures Survey. Health Rep 2010;21:1–14.

    Google Scholar 

  3. Ball G, McCargar L. Childhood obesity in Canada: A review of prevalence estimates and risk factors for cardiovascular diseases and type 2 diabetes. Can J Appl Physiol 2003;28:117–40.

    Article  Google Scholar 

  4. Figueroa-Munoz JI, Chinn S, Rona RJ. Association between obesity and asthma in 4–11 year old children in the UK. Thorax 2001;56:133–37.

    Article  CAS  Google Scholar 

  5. Williams J, Wake M, Hesketh K, Maher F, Waters E. Health-related quality of life of overweight and obese children. JAMA 2005;293:70–76.

    Article  CAS  Google Scholar 

  6. Sjöberg RL, Nilsson KW, Leppert J. Obesity, shame, and depression in school-aged children: A population-based study. Pediatrics 2005;116:e389–e392.

    Article  Google Scholar 

  7. Frumkin H, Frank L, Jackson R. Urban Sprawl and Public Health: Designing, Planning, and Building for Healthy Communities. Washington, DC: Island Press, 2004.

    Google Scholar 

  8. Popkin BM, Duffey K, Gordon-Larsen P. Environmental influences on food choice, physical activity and energy balance. Physiol Behav 2005;86:603–13.

    Article  CAS  Google Scholar 

  9. Giles-Corti B, Timperio A, Bull F, Pikora T. Understanding physical activity environmental correlates: Increased specificity for ecological models. Exerc Sport Sci Rev 2005;33:175–81.

    Article  Google Scholar 

  10. Leatherdale S, Papadakis S. A multi-level examination of the association between older social models in the school environment and overweight and obesity among younger students. J Youth Adolesc 2011;40:361–72.

    Article  Google Scholar 

  11. Binkley JK, Eales J, Jekanowski M. The relation between dietary change and rising US obesity. Int J Obes RelatMetab Disord 2000;24:1032–39.

    Article  CAS  Google Scholar 

  12. Maddock J. The relationship between obesity and the prevalence of fast food restaurants: State-level analysis. Am J Health Promot 2004;19:137–43.

    Article  Google Scholar 

  13. Morland K, Diez Roux AV, Wing S. Supermarkets, other food stores, and obesity: The Atherosclerosis Risk in Communities Study. Am J Prev Med 2006;30:333–39.

    Article  Google Scholar 

  14. Harris JL, Pomeranz JL, Lobstein T, Brownell KD. A crisis in the marketplace: How food marketing contributes to childhood obesity and what can be done. Annu Rev Public Health 2009;30:211–25.

    Article  Google Scholar 

  15. Datar A, Nicosia N. Junk Food in Schools and Childhood Obesity: Much Ado About Nothing? Working Paper. RAND Labor and Population, March 2009.

    Book  Google Scholar 

  16. Fox MK, Hedley Dodd A, Wilson A, Gleason PM. Association between school food environment and practices and body mass index of US public school children. J Am Diet Assoc 2009;109(2):S108–S117.

    Article  Google Scholar 

  17. Utter J, Scragg R, Percival T, Beaglehole R. School is back in New Zealand—and so is the junk food. N Z Med J 2009;122(1290):5–8.

    PubMed  Google Scholar 

  18. Cannuscio CC, Weiss EE, Asch DA. The contribution of urban foodways to health disparities. J Urban Health 2010;87(3):381–93.

    Article  Google Scholar 

  19. Zenk SN, Powell LM. US secondary schools and food outlets. Health & Place 2008;14:336–46.

    Article  Google Scholar 

  20. Gilliland J. The built environment and obesity: Trimming waistlines through neighbourhood design. In: Bunting T, Filion P (Eds.), Canadian Cities in Transition, 4th Ed. Toronto, ON: Oxford University Press, 2010.

    Google Scholar 

  21. Reidpath DD, Burns C, Garrard J, Mahoney M, Townsend M. An ecological study of the relationship between social and environmental determinants of obesity. Health & Place 2002;8:141–45.

    Article  Google Scholar 

  22. Smoyer-Tomic KE, Spence JC, Raine KD, Amrhein C, Cameron N, Yasenovskiy V, et al. The association between neighbourhood socioeconomic status and exposure to supermarkets and fast food outlets. Health & Place 2008;14:740–54.

    Article  Google Scholar 

  23. He M, Tucker P, Gilliland J, Irwin JD, Larsen K, Hess P. The influence of local food environments on adolescents’ food purchasing behaviors. Int J Environ Public Health 2011;8:doi:10.3390/i]perh812####.

    Google Scholar 

  24. He M, Tucker P, Irwin JD, Gilliland J, Larsen K, Hess P. Obesogenic neighbourhoods: The impact of neighbourhood restaurants and convenience stores on adolescents’ food consumption behaviours. Public Health Nutr 2012; doi:10.1017/S1368980012000584.

    Google Scholar 

  25. Seliske LM, Pickett W, Boyce WF, Janssen I. Association between the food retail environment surrounding schools and overweight in Canadian youth. Public Health Nut 2009;12:1384–91.

    Article  Google Scholar 

  26. Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act 2010;7:40.

    Article  Google Scholar 

  27. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep 2011;22:1–10.

    Google Scholar 

  28. Tucker P, Irwin J, Gilliland J, Larsen K, He M, Hess P. Environmental influences on physical activity levels in youth. Health & Place 2009;15:357–63.

    Article  Google Scholar 

  29. Huston SL, Evenson KR, Bors P, Gizlice Z. Neighborhood environment, access to places for activity, and leisure-time physical activity in a diverse North Carolina population. Am J Health Promot 2003;18:58–69.

    Article  Google Scholar 

  30. Hume C, Salmon J, Ball K. Children’s perceptions of their home and neighborhood environments, and their association with objectively measured physical activity: A qualitative and quantitative study. Health Educ Res 2005;20:1–13.

    Article  CAS  Google Scholar 

  31. Frank L, Kerr J, Chapman J, Sallis JF. Urban form relationships with walk trip frequency and distance among youth. Am J Health Promot 2007;21:305–11.

    Article  Google Scholar 

  32. Wolch J, Wilson JP, Fehrenbach J. Parks and park funding in Los Angeles: An equity-mapping analysis. Urban Geogr 2005;26:4–35.

    Article  Google Scholar 

  33. Gilliland J, Holmes M, Irwin JD, Tucker P. Environmental equity is child’s play: Mapping public provision of recreation opportunities in urban neighbourhoods. Vulnerable Children & Youth Studies 2006;1:256–68.

    Article  Google Scholar 

  34. Tremblay MS, Katzmarzyk PT, Willms JD. Temporal trends in overweight and obesity in Canada, 1981–1996. Int J Obes 2002;26(4):538–43.

    Article  CAS  Google Scholar 

  35. World Health Organization. Growth Reference Data for 5–19 years, 2007. Available at: https://doi.org/www.who.int/growthref/en/ (Accessed December 10, 2011).

    Google Scholar 

  36. Bow CJD, Waters NM, Faris PD, Seidel JE, Galbraith PD, Knudtson ML, et al. Accuracy of city postal code coordinates as a proxy for location of residence. Int J Health Geogr 2004;3:5.

    Article  Google Scholar 

  37. Healy M, Gilliland J. Quantifying the magnitude of environmental exposure misclassification when using imprecise address proxies in public health research. Spatial and Spatio-temporal Epidemiology 2012; doi:10.1016/j.sste.2012.02.006.

    Google Scholar 

  38. Muthén LK, Muthén BO. Mplus User’s Guide, Sixth Edition. Los Angeles, CA: Muthén & Muthén, 2010.

    Google Scholar 

  39. Leatherdale ST, Pouliou T, Church D, Hobin E. The association between overweight and opportunity structures in the built environment: A multi-level analysis among elementary school youth in the PLAY-ON study. Int J Public Health 2011;56:237–46.

    Article  Google Scholar 

  40. Loebach J, Gilliland J. Child guides: Exploring the use of child-led tours to uncover perceptions and use of neighbourhood environments. Children, Youth and Environments 2010;20(1):52–90.

    Google Scholar 

  41. Tucker P, Irwin JD, Gilliland, J, He M. Adolescents’ perspective of home, school and neighborhood environmental influences on physical activity and dietary behaviors. Children, Youth and Environments 2008;18(2):12–35.

    Google Scholar 

  42. Mitra R, Buliung R. Built environment correlates of active school transportation: Neighborhood and the modifiable areal unit problem. J Transport Geogr 2012;20:57–58.

    Article  Google Scholar 

  43. Duvalla CS, Howard PH, Goldsberry K. Apples and oranges? Classifying food retailers in a midwestern US city based on the availability of fresh produce. J Hunger & Environ Nutr 2010;5(4):526–41.

    Article  Google Scholar 

  44. Liese AD, Colabianchi N, Lamichhane AP, Barnes TL, Hibbert JD, Porter DE, et al. Validation of 3 food outlet databases: Completeness and geospatial accuracy in rural and urban food environments. Am J Epidemiol 2010;172:1324–33.

    Article  Google Scholar 

  45. Jeffery RW, Baxter J, McGuire M, Linde J. Are fast food restaurants an environmental risk factor for obesity? Int J Behav Nutr Phys Act 2006;3:2.

    Article  Google Scholar 

  46. Alter DA, Eny K. The relationship between the supply of fast-food chains and cardiovascular outcomes. Can J Public Health 2005;96(3):173–77.

    PubMed  Google Scholar 

  47. Reilly JJ, Dorosty AR, Emmett PM. Identification of the obese child: Adequacy of the body mass index for clinical practice and epidemiology. Int J Obes 2000;24(12):1623–27.

    Article  CAS  Google Scholar 

  48. Scholtens S, Brunekreef B, Visscher T, Smit HA, Kerkhof M, de Jongste JC, et al. Reported versus measured body weight and height of 4-year-old children and the prevalence of overweight. Eur J Public Health 2007;17(4):369–74.

    Article  Google Scholar 

  49. Larsen K, Gilliland J, Hess P, Tucker P, Irwin J, He M. The influence of the physical environment and sociodemographic characteristics on children’s mode of travel to and from school. Am J Public Health 2009;99(3):520–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Gilliland PhD.

Additional information

Acknowledgements: This study was supported by research grants from the Heart and Stroke Foundation of Canada, the Green Shield Canada Foundation and the Canadian Institutes of Health Research’s Institutes of Human Development, Child and Youth Health, and Nutrition, Metabolism and Diabetes

Conflict of Interest: None to declare

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilliland, J.A., Rangel, C.Y., Healy, M.A. et al. Linking Childhood Obesity to the Built Environment: A Multi-level Analysis of Home and School Neighbourhood Factors Associated With Body Mass Index. Can J Public Health 103 (Suppl 3), S15–S21 (2012). https://doi.org/10.1007/BF03403830

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03403830

Key words

Mots clés

Navigation