Skip to main content
Log in

Premenopause: The endocrinology of reproductive decline

  • Review
  • Published:
Hormones Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Faddy MJ, Godsen RG, Gougeon A, Richardson SJ, Nelson JF, 1992 Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod 7: 1342–1346.

    Article  PubMed  CAS  Google Scholar 

  2. WHO Scientific Group 1996 Research on the Menopause in the 1990’s. a report of the WHO scientific group. World Health Organization, Geneva, Switzerland; pp, 866: 1–79.

    Google Scholar 

  3. Soules MR, Sherman S, Parrott E, et al, 2001 Executive summary: Stages of Reproductive Aging Workshop (STRAW). Climacteric 4: 267–272.

    Article  PubMed  CAS  Google Scholar 

  4. Den Tokelaar I, de Boer EJ, Broekmans FJ, Te Velde ER, 2002 Executive summary: Stages of Reproductive Aging Workshop (STRAW): Not less, but more confusion. Climacteric 5: 399–401.

    Article  Google Scholar 

  5. National Institutes of Health, 2005 National institutes of health state-of-the-science conference statement: Management of menopause-related symptoms. Ann Intern Med 142: 1003–1013.

    Article  Google Scholar 

  6. Harlow SD, Gass M, Hall JE, et al, 2012 Executive summary of the Stages of Reproductive Aging Workshop + 10: addressing the unfinished agenda of staging reproductive aging. Fertile Steril 97: 843–951.

    Article  Google Scholar 

  7. Prior JC, 1998 Perimenopause: The complex endocrinology of the menopause transition. Endocrine Reviews 19: 397–428.

    Article  PubMed  CAS  Google Scholar 

  8. Burger HG, Dudley EC, Robertson DM, Dennerstein L, 2002 Hormonal changes in the menopause transition. Recent Prog Horm Res 57: 257–275.

    Article  PubMed  CAS  Google Scholar 

  9. Prior JC, 2005 Ovarian aging and the perimenopausal transition. Endocrine 26:297–300.

    Article  PubMed  CAS  Google Scholar 

  10. Burger H 2008 The menopausal transition — endocrinology. J Sex Med 5: 2266–2273.

    Article  PubMed  CAS  Google Scholar 

  11. Broekmans FJ, Soules MR, Fauser BC, 2009 Ovarian aging: Mechanisms and clinical consequences. Endocrine Reviews 30: 465–493.

    Article  PubMed  CAS  Google Scholar 

  12. Block E, 1952 Quantitative morphological investigation of the follicular system. Variations in different age. Acta Anat 14: 108–123.

    Article  PubMed  CAS  Google Scholar 

  13. Richardson SJ, Senikas V, Nelson F, 1987 Follicular depletion during the menopausal transition: Evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 65: 1231–1237.

    Article  PubMed  CAS  Google Scholar 

  14. Gougeon A, Ecochard R, Thalabard JC, 1994 Age-related changes of the population of human ovarian follicles: Increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod 50: 653–663.

    Article  PubMed  CAS  Google Scholar 

  15. Westhoff C, Murphy P, Heller D, 2000 Predictors of ovarian follicle number. Fertil Steril 74: 624–628.

    Article  PubMed  CAS  Google Scholar 

  16. Reuss ML, Kline J, Santos R, Levin B, Timor-Tritsch I, 1996 Age and the ovarian follicle pool assessed with transvaginal ultrasonography. Am J Obstet Gynecol 174: 624–627.

    Article  Google Scholar 

  17. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA, 2008 A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Human Reprod 23: 699–708.

    Article  Google Scholar 

  18. Treloar AE, Boyton RE, Behn BG, Brown BW, 1967 Variations of the human menstrual cycle through reproductive life. Int J Fertil Steril 12: 77–126.

    CAS  Google Scholar 

  19. Treloar AE, 1981 Menstrual cyclicity and the premenopause. Maturitas 3: 249–264.

    Article  PubMed  CAS  Google Scholar 

  20. Chiazze L, Brayer FT, Macisco JJ, Parker MP, Duffy BJ, 1968 The length and variability in the human menstrual cycle. J Am Med Assoc 203: 377–380.

    Article  Google Scholar 

  21. Lenton EA, Landgren BM, Sexton L, Harper R, 1984 Normal variation in the length of the follicular phase of the menstrual cycle: effect of chronological age. Br J Obstet Gynaecol 91: 681–684.

    Article  PubMed  CAS  Google Scholar 

  22. Brambilla DJ, McKinlay SM, Johannes CB, 1994 Defining the perimenopause for application in epidemiologic investigations. Am J Epidemiol 140: 1091–1095.

    Article  PubMed  CAS  Google Scholar 

  23. Hardy H, Kuh D, 1999 Reproductive characteristics and the age at inception of the perimenopause in a British National Cohort. Am J Epidemiol 149: 612–620.

    Article  PubMed  CAS  Google Scholar 

  24. Den Tonkelaar I, te Velde ER, Looman CW, 1998 Menstrual cycle length preceding menopause in relation to age at menopause. Maturitas 29: 115–123.

    Article  Google Scholar 

  25. Münster K, Schimdt L, Helm P, 1992 Length and variation in the menstrual cycle — a cross sectional study from a Danish county. Br J Obstet Gynaecol 99: 422–429.

    Article  PubMed  Google Scholar 

  26. Robertson DM, Hale GE, Fraser IS, Hughes CL, Burger HG, 2008 A proposed classification system for menstrual cycles in the menopause transition based on changes in serum hormone profiles. Menopause 15: 1139–1144.

    Article  PubMed  Google Scholar 

  27. Brown JB, 2011 Types of ovarian activity in women and their significance: the continuum (a reinterpretation of early findings). Human Reprod Update 17: 141–158.

    Article  CAS  Google Scholar 

  28. Donnez J, 2011 Menometrorrhagia during the premenopause: an overview. Gynecol Endocrinol 27: Suppl 1: 1114–1119.

    Article  PubMed  Google Scholar 

  29. Bouchard P, 2011 Current and future medical treatments for menometrorrhagia during the premenopause. Gynecol Endocrinol 27: Suppl 1: 1120–1125.

    Article  PubMed  CAS  Google Scholar 

  30. Campagnoli C, Ambroggio S, Lotano MR, Peris C, 2009 Progestogen use in women approaching the menopause and breast cancer risk. Maturitas 62: 338–342.

    Article  PubMed  CAS  Google Scholar 

  31. Ortmann O, Doren M, Windler E, 2011 Hormone therapy in perimenopause and postmenopause (HT). Arch Gynecol obstet 284: 343–355.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Balasch J, Gratacos E, 2012 Delayed childbearing: effects on fertility and the outcome of pregnancy. Curr Opin Obstet Gynecol 24: 187–193.

    Article  PubMed  Google Scholar 

  33. Shufaro Y, Schenker JG, 2012 Pregnancies beyond the human biological fecundity. Womens Health (Lond Engl) 8: 49–55.

    Article  Google Scholar 

  34. Reproductive Endocrinology and infertility Committee 2011 Advanced reproductive age and fertility. J Obstet Gynaecol Can 33: 1165–1175.

    Article  Google Scholar 

  35. Nybo Andersen Am, Wohlfahrt J, Christens P, Olsen J, Melbye M, 2000 Maternal age and fetal loss: population based register linkage study. BMJ 320: 1708–1712.

    Article  PubMed  CAS  Google Scholar 

  36. Hale GE, Hitchcock CL, Williams LA, Vigna YM, Prior JC, 2003 Cyclicity of breast tenderness and night-time vasomotor symptoms in mid-life women: information collected using the Daily Perimenopause Diary. Climacteric 6: 128–139.

    Article  PubMed  CAS  Google Scholar 

  37. Kronenberg F 1990 Hot flashes: epidemiology and physiology. Ann N Y Acad Sci 592: 52–86.

    Article  PubMed  CAS  Google Scholar 

  38. Makanji Y, Harrison CA, Robertson DM, 2011 Feedback regulation by inhibins A and B of the pituitary secretion of follicle-stimulating hormone. Vitam Horm 85: 299–321.

    Article  PubMed  CAS  Google Scholar 

  39. Groome NP, Illingworth PJ, O’Brien M 1996 Measurement of dimeric inhibin B throughout the human menstrual cycle. J Clin Endocrinol Metab 81: 1401–1405.

    PubMed  CAS  Google Scholar 

  40. Xia Y, Schneyer AL, 2009 The biology of activin: recent advances in structure, regulation and function. J Endocrinol 202: 1–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. La Marca A, Volpe A, 2006 Anti-Müllerian hormone (AMH) in female reproduction: is measurement of circulating AMH a useful tool? Clin Endocrinol (Oxf) 64: 603–610.

    Article  CAS  Google Scholar 

  42. Bilezikjian LM, Justice NJ, Blacker AN, Wiater E, Vale WW, 2012 Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Mol Cell Endocrinol 359: 43–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Sherman BM, Korenman SC, 1979 Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Investigation 55: 699–706.

    Article  Google Scholar 

  44. Lee SJ, Lenton EA, Sexton L, Cooke ID, 1988 The effect of age on the cyclical patterns of plasma LH, FSH, oestradiol and progesterone in women with regular menstrual cycles. Human Reproduction 3: 851–855.

    Article  PubMed  CAS  Google Scholar 

  45. Lahlou N, Chabbert-Buffet N, Christin-Maitre S, Le Nestour E, Roger M, Bouchard P, 1999 Main inhibitor of follicle stimulating hormone in the luteal-follicular: inhibin A, oestradiol, or inhibin B? Hum Reprod 14: 1190–1193.

    Article  PubMed  CAS  Google Scholar 

  46. Reame NE, Kelch RP, Beitins IZ, et al, 1996 Age effects on follicle-stimulating hormone and pulsatile luteinizing hormone secretion across the menstrual cycle of premenopausal women. J Clin Endocrinol Metab 81: 1512–1518.

    PubMed  CAS  Google Scholar 

  47. Burger HG, Dudley EC, Hopper JL, et al, 1995 The endocrinology of the menopausal transition: a cross-sectional study of a population-based sample. J Clin Endocrinol Metab 80: 3537–3545.

    PubMed  CAS  Google Scholar 

  48. Burger HG, Dudley EC, Hopper JL, et al, 1999 Prospectively measured levels of serum follicle-stimulating hormone, estradiol, and the dimeric inhibins during the menopausal transition in a population-based cohort of women. J Clin Endocrinol Metab 85: 4025–4030.

    Google Scholar 

  49. Santoro N, Brown JR, Adel T, Skurnick JH, 1996 Characterization of reproductive hormonal dynamics in the perimenopause. J Clin Endocrinol Metab 81: 1495–1501.

    PubMed  CAS  Google Scholar 

  50. Miro F, Parker SW, Aspinall LJ, Coley J, Perry PW, Ellis JE, 2004 Origins and consequences of the elongation of the human menstrual cycle during the menopausal transition: The FREEDOM study. J Clin Endocrinol Metab 89: 4910–4915.

    Article  PubMed  CAS  Google Scholar 

  51. Backer LC, Rubin CS, Marcus M, Kieszak SM, Schober Se, 1999 Serum follicle-stimulating hormone and luteinizing hormone levels in women aged 35–60 in the U.S. population: the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Menopause 6: 29–35.

    Article  PubMed  CAS  Google Scholar 

  52. Landgren BM, Collins A, Csemiczky G, 2004 Menopause transition: Annual changes in serum hormonal patterns over the menstrual cycle in women during a nine-year period prior to menopause. J Clin Endocrinol Metab 89: 2763–2769.

    Article  PubMed  CAS  Google Scholar 

  53. Hale GE, Zhao X, Hughes CL, et al, 2007 Endocrine features of menstrual cycles in middle and late reproductive age and the menopausal transition classified according to the staging of reproductive aging workshop (STRAW) staging system. J Clin Endocrinol Metab 92: 3060–3067.

    Article  PubMed  CAS  Google Scholar 

  54. Hale GE, Hughes CL, Burger HG, 2009 Atypical estradiol secretion and ovulation patterns caused by luteal out-of-phase (LOOP) events underlying irregular ovulatory menstrual cycles in the menopausal transition. Menopause 16: 50–59.

    Article  PubMed  Google Scholar 

  55. Scott RT, Toner JP, Muasher SJ, Oehninger S, Robinson S, Rosenwaks Z, 1989 Follicle-stimulating hormone levels on cycle day 3 are predictive of in vitro fertilization outcome. Fertil Steril 51: 651–654.

    Article  PubMed  CAS  Google Scholar 

  56. Martin JS, Nisker JA, Tummon IS, Daniel SA, Auckland JL, Feyles V, 1996 Future in vitro fertilization pregnancy potential of women with variable elevated day 3 follicle-stimulating hormone levels. Fertil Steril 65: 1238–1240.

    Article  PubMed  CAS  Google Scholar 

  57. Henrich JB, Hughes JP, Kaufman SC, 2006 Limitations of follicle-stimulating hormone in assessing menopause status: findings from the National Health and Nutrition Examination Survey (NHANES 1999–2000). Menopause 13: 171–177.

    Article  PubMed  Google Scholar 

  58. Bancsi LF, Boekmans FJ, Eijkemans MJ, 2002 Predictors of poor ovarian response in in-vitro fertilization: a prospective study comparing basal markers of ovarian reserve. Fertil Steril 77: 328–336.

    Article  PubMed  Google Scholar 

  59. Chang MY, Chiang CH, Hsieh TT, Soong YK, Hsu KH, 1998 Use of the antral follicle count to predict the outcome of assisted reproductive technologies. Fertil Steril 69: 505–510.

    Article  PubMed  CAS  Google Scholar 

  60. Hendriks DJ, Mol BW, Bancsi LF, et al, 2005 Antral follicle count in the prediction of poor ovarian response and pregnancy after in vitro fertilization: a meta-analysis and comparison with basal follicle-stimulating hormone level. Fertil Steril 83: 291–301.

    Article  PubMed  Google Scholar 

  61. Bancsi LF, Broekmans FJ, Mol BW, Habbema JD, te Velde ER, 2003 Performance of basal follicle-stimulating hormone in the prediction of poor ovarian response and failure to become pregnant after in vitro fertilization: a meta-analysis. Fertil Steril 79: 1091–1100.

    Article  PubMed  Google Scholar 

  62. Danforth DR, Arbogast LK, Mroueh J, et al, 1998 Dimeric inhibin: a direct marker of ovarian aging. Fertil Steril 70: 119–123.

    Article  PubMed  CAS  Google Scholar 

  63. MacNaughton J, Banah M, McCloud P, Hee J, Burger H, 1992 Age related changes in follicle stimulating hormone, luteinizing hormone, oestradiol and immunoreactive inhibin in women of reproductive age. Clin Endocrinol (Oxf) 36: 339–345.

    Article  CAS  Google Scholar 

  64. Klein NA, Houmard BS, Hansen KR, et al, 2004 Age-related analysis of inhibin A, inhibin B and activin a relative to the intercycle monotropic follicle-stimulating hormone rise in normal ovulatory women. J Clin Endocrinol Metab 89: 2977–2981.

    Article  PubMed  CAS  Google Scholar 

  65. Karkanaki A, Vosnakis Ch, Panidis D, 2011 The clinical significance of anti-Müllerian hormone in gynecological endocrinology. Hormones 10: 95–103.

    Article  PubMed  Google Scholar 

  66. Van Rooij IA, Broekmans FJ, te Velde ER, et al, 2002 Serum anti-Müllerian hormone levels: a novel measure of ovarian reserve. Hum Reprod 17: 3065–3071.

    Article  PubMed  Google Scholar 

  67. Fanchin R, Schonäuer LM, Righini C, Guibourdenche J, Frydman R, Taieb J, 2003 Serum anti-Müllerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum Reprod 18: 323–327.

    Article  PubMed  CAS  Google Scholar 

  68. Van Rooij IA, Broekmans FJ, Scheffer GL, et al, 2005 Serum anti-Müllerian hormone levels best reflect the reproductive decline with age in normal women with proven fertility: a longitudinal study. Fertil Steril 83: 979–987.

    Article  PubMed  CAS  Google Scholar 

  69. Eldar-Geva T, Ben-Chetrit A, Spitz IM, et al, 2005 Dynamic assays of inhibin B, anti-Müllerian hormone and estradiol following FSH stimulation and ovarian ultrasonography as predictors of IVF outcome. Hum Reprod 20: 3178–3183.

    Article  PubMed  CAS  Google Scholar 

  70. Sowers MR, Eyvazzadeh A, McConnell D, et al, 2008 Anti-Müllerian hormone and inhibin B in the definition of ovarian aging and the menopause transition. J Clin Endocrinol Metab 93: 3478–3483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Broer SL, Mol BWJ, Hendriks D, Broekmans FJM, 2009 The role of anti-müllerian hormone in prediction of outcome after IVF: comparison with the antral follicle count. Fertil Steril 91: 705–714.

    Article  PubMed  CAS  Google Scholar 

  72. Ocal P, Sahmay S, Cetin M, Irez T, Guralp O, Cepni I, 2011 Serum anti-Müllerian hormone and antral follicle count as predictive markers of OHSS in ART cycles. J Assist Reprod Genet 28: 1197–1203.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Steiner AZ, Herring AH, Kesner JS, et al, 2011 Anti-Müllerian hormone as a predictor of natural fecund-ability in women aged 30–42 years. Obstet Gynecol 117: 798–804.

    Article  PubMed  CAS  Google Scholar 

  74. Anderson RA, Nelson SM, Wallace WH, 2012 Measuring anti-Müllerian hormone for the assessment of ovarian reserve: when and for whom is it indicated? Maturitas 71: 28–33.

    Article  PubMed  CAS  Google Scholar 

  75. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lam-balk CB, 2006 A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update 12: 685–718.

    Article  PubMed  CAS  Google Scholar 

  76. Batrinos ML, 2012 The aging of the endocrine hypothalamus and its dependent endocrine glands. Hormones (Athens) 11: 241–253.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menelaos L. Batrinos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batrinos, M.L. Premenopause: The endocrinology of reproductive decline. Hormones 12, 334–349 (2013). https://doi.org/10.1007/BF03401300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401300

Key words

Navigation