Skip to main content
Log in

Hydratable Alumina-Bonded Suspensions: Evolution of Microstructure and Physical Properties During First Heating

  • Review Papers
  • Published:
Interceram - International Ceramic Review

Abstract

Hydratable alumina (HA) is a calcium-free and high-refractoriness binder for alumina-based suspensions. Although recent studies have improved its dispersion, mixing and drying behaviours, a drawback related to its loss of strength between 250 and 900°C remains unexplored. Pores generated after decomposition of HA curing products are usually an explanation for the effect; however, no experimental result has supported this hypothesis so far. This study investigated the effects of thermal treatment (120–1500°C) upon the microstructure and physical properties of calcined alumina suspensions containing different amounts of HA (10–40 vol.-%). Porosity, compression strength and flexural elastic modulus measurements, thermal linear variation and thermogravimetric analysis were compared with scanning electron microscopy and X-ray diffraction results. The average matrix particle size and amount of HA in the formulation play major roles in the types of curing products that are formed. The strength reduction observed during first heating was not directly associated with the increase in porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, J.F., Clark D., Elliott, W.W.: The thermal decomposition of the alumina trihydrate gibbsite. J. Chem. Soc. (1953) 84–88

  2. Gitzen, W.H.: Alumina as ceramic material. The American Ceramic Society, Westerville (1970)

    Google Scholar 

  3. Burtin, P.: Influence of surface area and additives on the thermal stability of transition alumina catalyst supports, II: Kinetic model and interpretation. Appl. Catalysis 34 (1987) [1–2] 239–254

    Article  CAS  Google Scholar 

  4. Levin, I., Brandon, D.: Metastable alumina polymorphs: crystal structures and transition sequences. J. Am. Ceram. Soc. 81 (1998) [8] 1995–2012

    Article  CAS  Google Scholar 

  5. Musselman, L.L.: Production processes, properties, and applications for aluminum-containing hydroxides. Alumina chemicals: Science and technology handbook (1990) 75–92, ISBN: 978-0-916094-33-1

  6. Goodboy, K.P., Downing, J.C.: Production processes, properties, and applications for activated and catalytic aluminas. Alumina chemicals: Science and technology handbook (1990) 93–108, ISBN: 978-0-916094-33-1

  7. Zhou, R.S., Snyder, R.L.: Structure and transformation mechanisms of the η, ϒ, and θ transition aluminas. Acta Crystall. Section B: Structural Science 47 (1991) [5] 617–630

    Article  Google Scholar 

  8. Santos, P.S., Santos, H.S., Toledo, S.P: Standard transition aluminas: Electron microscopy studies. Mater. Res. 3 (2000) [4] 104–114

    Article  CAS  Google Scholar 

  9. Bhattacharya, I.N., Das, S.C., Mukherjee, P.S., Paul, S., Mitra, P.K.: Thermal decomposition of precipitated fine aluminium trihydroxide, Scand. J. Metal. 33 (2004) [4] 211–219

    Article  CAS  Google Scholar 

  10. Coelho, A.C.V., Santos H.S.S., Kiyohara P.K., Marcos K.N.P., Santos P.S.S.: Surface area, crystal morphology and characterization of transition alumina powders from a new gibbsite precursor. Mater. Res. 10 (2007) [2] 183–189

    Article  CAS  Google Scholar 

  11. Gan, B.K., Madsen, I.C., Hockridge, J.G.: In situ X-ray diffraction of the transformation of gibbsite to alpha-alumina through calcination: Effect of particle size and heating rate. J. Appl. Crystall. 42 (2009) [4] 697–705

    Article  CAS  Google Scholar 

  12. Souza, A.D.V., Arruda, C.C., Fernandes, L., Antunes, M.L.P., Kiyohara, P.K., Salomão, R.: Characterization of aluminum hydroxide (Al(OH)3) for its use as a porogenic agent in castable ceramics. J. Europ. Ceram. Soc. 35 (2015) [2] 803–812

    Article  CAS  Google Scholar 

  13. Hong, Y.: ρ-Alumina bonded castable refractories. Taikabutsu Overseas 9 (1988) [1] 35–38

    Google Scholar 

  14. Ma, W., Brown, P.W.: Mechanisms of reaction of hydratable aluminas. J. Am. Ceram. Soc. 82 (1999) [2] 453–456

    Article  CAS  Google Scholar 

  15. Mista, W., Wrzyszcz, J.: Rehydration of transition aluminas obtained by flash calcination of gibbsite. Thermochimica Acta 331 (1999) [1] 67–72

    Article  CAS  Google Scholar 

  16. Vaidya, S.D., Thakkar, N.V.: Effect of temperature, pH and ageing time on hydration of rho alumina by studying phase composition and surface properties of transition alumina obtained after thermal dehydration. Mater. Letters 51 (2001) [4] 295–300

    Article  CAS  Google Scholar 

  17. Vaidya, S.D., Thakkar, N.V.: Study of phase transformation during hydration of rho alumina by combined loss of ignition and X-ray diffraction technique. J. Phys. and Chem. Solids 62 (2001) [5] 977–986

    Article  CAS  Google Scholar 

  18. Salomão, R., Ismael, M.R., Pandolfelli, V.C.: Hydraulic binders for refractory castables: Mixing, curing and drying. CFI 84 (2007) [9] 103–108

    Google Scholar 

  19. Nagaoka, T., Duran, C., Isobe, T., Hotta, Y., Watari, K.: Hydraulic alumina binder for extrusion of alumina ceramics. J. Am. Ceram. Soc. 90 (2007) [12] 3998–4001

    CAS  Google Scholar 

  20. Souza, A.D.V., Salomão, R.: Evaluation of the porogenic behavior of aluminum hydroxide particles of different size distribution in castable high-alumina structures. J. Europ. Ceram. Soc. 36 (2016) [3] 885–897

    Article  CAS  Google Scholar 

  21. Pinto, U.A., Visconte, L.L.Y., Gallo J.B.: Flame retardancy in thermoplastic polyurethane elastomers with mica and aluminum trihydrate. Polymer degradation and Stability 69 (2000) [3] 257–260

    Article  CAS  Google Scholar 

  22. Santos, P.S., Coelho, A.C.V., Santos, H.S.S., Kiyohara, P.K.: Hydrothermal synthesis of well-crystallized boehmite crystals of various shapes. Mater. Res. 12 (2009) [4] 437–445.

    Article  CAS  Google Scholar 

  23. Rebouillat, L., Rigadu, M.: Andalusite-based high alumina castables. J. Am. Ceram. Soc. 85 (2002) [2] 373–378

    Article  CAS  Google Scholar 

  24. Ismael, M.R., Salomão, R., Pandolfelli, V.C.: Refractory castables based on colloidal silica and hydratable alumina. Am. Ceram. Soc. Bull. 86 (2007) [9] 58–61

    Google Scholar 

  25. Zhang, J., Jia, Q., Yan, S., Zhang, S., Liu, X.: Microstructure and properties of hydratable alumina bonded bauxite-andalusite based castable. Ceram. Inter. 42 (2016) [1] 310–316

    Article  CAS  Google Scholar 

  26. Ye, G., Troczynski, T.: Hydration of hydratable alumina in the presence of various forms of MgO. Ceram. Inter. 32 (2006) [3] 257–262

    Article  CAS  Google Scholar 

  27. Ahari, K.G., Sharp, J.H., Lee, W.E.: Hydration of refractory oxides in castable bond systems, I: Alumina, magnesia, and alumina-magnesia mixtures. J. Europ. Ceram. Soc. 22 (2002) [4] 495–503

    Article  Google Scholar 

  28. Oliveira, I.R., Pandolfelli, V.C.: Castable matrix, additives, and their role on hydraulic binder hydration. Ceram. Inter. 35 (2009) [4] 1453–1460

    Article  CAS  Google Scholar 

  29. Salomão, R., Pandolfelli, V.C.: The role of hydraulic binders on magnesia containing refractory castables: Calcium aluminate cement and hydratable alumina. Ceram. Inter. 35 (2009) [8] 3117–3124

    Article  CAS  Google Scholar 

  30. Braulio, M.A.L., Bittencourt, L.R.M., Pandolfelli, V.C.: Selection of binders for in situ spinel refractory castables. J. Europ. Ceram. Soc. 29 (2009) [13] 2727–2735

    Article  CAS  Google Scholar 

  31. Oliveira, I.R., Pandolfelli, V.C.: Does a tiny amount of dispersant make any change to refractory castable properties? Ceram. Inter. 36 (2010) [1] 79–85

    Article  CAS  Google Scholar 

  32. Ribeiro, C., Innocentini, M.D.M., Pandolfelli, V.C.: Permeability behavior during drying of refractory castables based on calcium-free alumina binders. J. Am. Ceram. Soc. 84 (2001) [1] 248–250

    Article  CAS  Google Scholar 

  33. Innocentini, M.D.M., Pardo, A.R.F., Pandolfelli, V.C., Menegazzo, B.A., Bittencourt, L.R.M., Rettore, R.P.: Permeability of high-alumina refractory based on various hydraulic binders. J. Am. Ceram. Soc. 85 (2002) [6] 1517–1521

    Article  CAS  Google Scholar 

  34. Salomão, R., Cardoso, F.A., Innocentini, M.D.M., Pandolfelli, V.C., Bittencourt, L.R.M.: Effect of polymeric fibers on refractory castables permeability. Am. Ceram. Soc. Bul. 82 (2003) [4] 51–56

    Google Scholar 

  35. Cardoso, F.A., Innocentini, M.D.M., Miranda, M.F.S., Valenzuela, F.A.O., Pandolfelli, V.C.: Drying behavior of hydratable alumina-bonded refractory castables. J. Europ. Ceram. Soc. 24 (2004) [5] 797–802

    Article  CAS  Google Scholar 

  36. Salomão, R., Pandolfelli, V.C.: Magnesia sinter hydration-dehydration behavior in refractory castables. Ceram. Inter. 34 (2008) [8] 1829–1834.

    Article  CAS  Google Scholar 

  37. Luz, A.P., Neto A.S., Santos, T., Medeiros, J., Pandolfelli, V.C.: Mullite-based refractory castable engineering for the petrochemical industry. Ceram. Inter. 39 (2013) [8] 9063–9070

    Article  CAS  Google Scholar 

  38. Souza, A.D.V., Sousa, L.L., Fernandes, L., Cardoso, P.H.L., Salomão, R.: Al2O3-Al(OH)3-Based castable porous structures. J. Europ. Ceram. Soc. 35 (2015) [6] 1943–1954

    Article  CAS  Google Scholar 

  39. Salomão, R., Souza, A.D.V., Cardoso, P.H.L.: A comparison of Al(OH)3 and Mg(OH)2 as inorganic porogenic agents for alumina. InterCeram: Inter. Ceram. Rev. 64 (2015) [4] 193–194

    Google Scholar 

  40. Salomão, R., Villas-Boas, M.O.C., Pandolfelli, V.C.: Porous alumina-spinel ceramics for high temperature applications. Ceram. Inter. 37 (2011) [7] 1393–1399

    Article  CAS  Google Scholar 

  41. Innocentini, M.D.M., Miranda, M.F.S., Cardoso, F.A., Pandolfelli, V.C.: Vaporization processes and pressure builtup during dewatering of dense refractory castables. J. Am. Ceram. Soc. 86 (2003) [9] 1500–1503

    Article  CAS  Google Scholar 

  42. Sousa, L.L., Souza, A.D.V., Fernandes, L., Arantes, V.L., Salomão, R.: Development of densification-resistant castable porous structures from in situ mullite. Ceram. Inter. 41 (2015) [8] 9443–9454

    Article  CAS  Google Scholar 

  43. Sousa, L.L., Salomão, R., Arantes, V.L.: Development and characterization of porous moldable refractory structures of the alumina-mullite-quartz system. Ceram. Inter. 43 (2017) [1B] 1362–1370

    Article  CAS  Google Scholar 

  44. Deng, Z.Y., Fukasawa, T., Ando, M.: High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3. J. Am. Ceram. Soc. 84 (2001) [3] 485–491

    Article  CAS  Google Scholar 

  45. Kwon, S., Messing, G.L.: Sintering of mixtures of seeded boehmite and ultrafine alpha-alumina. J. Am. Ceram. Soc. 83 (2000) [1] 82–88

    Article  CAS  Google Scholar 

  46. Deng, Y., Fukasawa, T., Ando, M.: Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide. J. Am. Ceram. Soc. 84 (2001) [11] 2638–2644

    Article  CAS  Google Scholar 

  47. Oliveira, I.R., Leite, V.M.C., Lima, M.P.V.P., Salomão, R.: Production of porous ceramic material using different sources of alumina and calcia. Revista Matéria 20 (2015) [3] 739–746

    Article  Google Scholar 

  48. Salomão, R., Fernandes, L.: Porous co-continuous mullite structures obtained from sintered aluminum hydroxide and synthetic amorphous silica. J. Europ. Ceram. Soc. 37 (2017) [8] 2849–2856

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Salomão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomão, R., Kawamura, M.A., Souza, A.D.V. et al. Hydratable Alumina-Bonded Suspensions: Evolution of Microstructure and Physical Properties During First Heating. Interceram. - Int. Ceram. Rev. 66, 28–37 (2017). https://doi.org/10.1007/BF03401226

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401226

Keywords

Navigation