Skip to main content
Log in

Low-Temperature Catalytic Graphitization of Phenolic Resin Using a Co-Ni Bimetallic Catalyst

  • Review Papers
  • Published:
Interceram - International Ceramic Review

Abstract

Using a Co-Ni bimetallic catalyst we investigated the catalytic graphitization of phenolic resin at 400, 600, 800, and 1000°C under an Ar atmosphere. The structure and morphology of the pyrolyzed resin were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the optimum catalytic graphitization temperature of phenolic resin is 800°C, both carbon nanotubes and carbon onions are formed in the final products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makarevich, N.I., Sushko, N.I., Ivanov, A.I., Lingart, E.N., Glazova, T.I., Prutkov, L.M.: Pyrolysis of some commercial phenol-formaldehyde bonding agents. Journal of Applied Spectroscopy 26 (1977) [4] 531–535

    Article  Google Scholar 

  2. Trick, K.A., Saliba, T.E.: Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Carbon 33(1995) [11] 1509–1515

    Article  CAS  Google Scholar 

  3. Wang, J.G., Guo, Q.G., Liu, L., Song, J.R.: Study on the microstructural evolution of high temperature adhesives for graphite bonding. Carbon 40 (2002) [13] 2447–2452

    Article  CAS  Google Scholar 

  4. Bafekrpour, E., Simon, G.P., Habsuda, J., Naebe, M., Yang, C., Fox, B.: Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites. Materials Science and Engineering A545 (2012) 123–131

    Article  CAS  Google Scholar 

  5. Luo, M., Li, Y., Sang, S., Zhao, L., Jin, S., Li, Y.: In situ formation of carbon nanotubes and ceramic whiskers in Al2O3-C refractories with addition of Ni-catalyzed phenolic resin. Materials Science and Engineering A 558 (2012) 533–542

    Article  CAS  Google Scholar 

  6. Jiang, H., Wang, J., Wu, S., Wang, B., Wang, Z.: Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon 48 (2010) [2] 352–358

    Article  CAS  Google Scholar 

  7. Inagaki, M., Fujita, K., Takeuchi, Y., Oshida, K., Iwata, H., Konno, H.: Formation of graphite crystals at 1000–1200°C from mixtures of vinyl polymers with metal oxides. Carbon 39 (2001) [6] 921–929

    Article  CAS  Google Scholar 

  8. Ramakrishnan, S., Jelmy, E.J., Dhakshnamoorthy, M., Rangarajan, M., Kothurkar, N.: Synthesis of carbon nanotubes from ethanol using RF-CCVD and Fe-Mo catalyst. Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 44 (2014), 44 [6] 873–876

    Article  CAS  Google Scholar 

  9. Tian, Y., Hu, Z., Yang, Y., Chen, X., Ji, W., Chen, Y.: Thermal analysis — mass spectroscopy coupling as a powerful technique to study the growth of carbon nanotubes from benzene. Chemical Physics Letters 388 (2004) [4–6] 259–262

    Article  CAS  Google Scholar 

  10. Li, Y., Li, X.K., Liu, L.: The production of CNTs by catalytic decomposition of different source gases. New Carbon Materials 19 (2004) [4] 298–302

    CAS  Google Scholar 

  11. Shaikjee, A., Coville, N.J.: The role of the hydrocarbon source on the growth of carbon materials. Carbon 50 (2012) [10] 3376–3398

    Article  CAS  Google Scholar 

  12. Simate, G.S., Iyuke, S.E., Ndlovu, S., Yah, C.S., Walubita, L.F.: The production of carbon nanotubes from carbon dioxide: challenges and opportunities. Journal of Natural Gas Chemistry 19 (2010) [5] 453–460

    Article  CAS  Google Scholar 

  13. Stamatin, I., Morozan, A., Dumitru, A., Ciupina, V., Prodan, G., Niewolski, J. et al.: The synthesis of multi-walled carbon nanotubes (MWNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Physica E: Low-dimensional Systems and Nanostructures 37 (2007) [1–2] 44–48

    Article  CAS  Google Scholar 

  14. Quan, C., Li, A., Gao, N.: Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil. Journal of Hazardous Materials 179 (2010) [1–3] 911–917

    Article  CAS  Google Scholar 

  15. Skowroński, J.M., Knofczyński, K., Inagaki, M.: Changes in electrochemical insertion of lithium into glass-like carbon affected by catalytic graphitization at 1000°C. Solid State Ionics 178 (2007) [1–2] 137–144

    Article  CAS  Google Scholar 

  16. Xu, S., Zhang, F., Kang, Q., Liu, S., Cai, Q.: The effect of magnetic field on the catalytic graphitization of phenolic resin in the presence of Fe-Ni. Carbon 47 (200) [14] 3233–3237

    Article  CAS  Google Scholar 

  17. Jin, Y., Wang, G., Li, Y.: Catalytic growth of high quality single-walled carbon nanotubes over a Fe/MgO catalyst derived from a precursor containing Feitknecht compound. Applied Catalysis A General 445–446 (2012) 121–127

    Article  CAS  Google Scholar 

  18. Zhao, M., Song, H., Chen, X., Lian, W.: Large-scale synthesis of onion-like carbon nanoparticles by carbonization of phenolic resin. Acta Materialia 55 (2007) [18] 6144–6150

    Article  CAS  Google Scholar 

  19. Yan, Y., Yang, H., Zhang, F., Tu, B., Zhao, D.: Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules. Carbon 45 (2007) [11] 2209–2216

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Zhang or S. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Deng, X., Zhang, H. et al. Low-Temperature Catalytic Graphitization of Phenolic Resin Using a Co-Ni Bimetallic Catalyst. Interceram. - Int. Ceram. Rev. 65, 24–27 (2016). https://doi.org/10.1007/BF03401183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401183

Keywords

Navigation