Skip to main content
Log in

A Comparison of Al(OH)3 and Mg(OH)2 as Inorganic Porogenic Agents for Alumina

  • Review Papers
  • Published:
Interceram - International Ceramic Review

Abstract

Castable porous ceramics combine the high refractoriness of ceramics, the useful characteristics of porous materials and the straightforward installation of castable systems. In this study, particles of aluminium hydroxide (Al(OH)3) and magnesium hydroxide (Mg(OH)2) of similar average size were added separately to an alumina castable (up to 67 vol.-%). During thermal treatment (1100–1500°C), variations occurred in their porosity levels, mechanical properties, phase composition and microstructure. These were related to physical-chemical changes and Al2O3-MgO solid-state reactions. Both systems have potential to be technologically useful. AH-based structures showed intermediate levels of porosity (around 60%) and higher compression strength (above 10 MPa), which enable them to be employed as sintered lightweight aggregates for refractory insulating mortars. The MH-based castables, on the other hand, exhibited higher porosity levels (above 60%) and excellent dimensional stability. They can therefore be used as primary thermal insulators for long-life services at steelmaking, cement production and petrochemical plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Studart, A.R., Gunzenbach, U.T., Tervoot, E., Gauckler, L.J.: Processing routes to macroporous ceramics: A review. J. Am. Ceram. Soc. 89 (2006) [6] 1771–1789

    Article  CAS  Google Scholar 

  2. Souza, A.D.V., Sousa, L.L., Fernandes, L., Cardoso, P.H.L., Salomão, R.: Al2O3-Al(OH)3-Based castable porous structures. J. Eur. Ceram. Soc. 35 (2015) [6] 1943–1954

    Article  CAS  Google Scholar 

  3. Nishikawa, A.: Technology of monolithic refractories. Tokyo: Technical Report No. 33-7, PLIBRICO Japan Co. Ltd. (1984) 98–101

  4. Salomão, R., Villas Boas, M.O.C., Pandolfelli, V.C.: Porous alumina-spinel ceramics for high temperature applications. Ceram. Inter. 37 (2011) [7] 1393–1399

    Article  CAS  Google Scholar 

  5. Sousa, L.L., Souza, A.D.V., Fernandes, L, Arantes, V.L., Salomão, R.: Development of densification-resistant castable porous structures form in situ mullite. Ceram. Inter. 41 (2015) [8] 9443–9454

    Article  CAS  Google Scholar 

  6. Lyckfeldt, O., Ferreira, J.M.F.: Processing of porous ceramics by starch consolidation. J. Eur. Ceram. Soc. 18 (1998) [2] 131–140

    Article  CAS  Google Scholar 

  7. Deng, Y., Fukasawa, T., Ando, M.: Microstructure and mechanical properties of porous alumina ceramics fabricated by the decomposition of aluminum hydroxide J. Am. Ceram. Soc. 84 (2001) [11] 2638–2644

    Article  CAS  Google Scholar 

  8. Ortega, F.S., Sepulveda, P., Pandolfelli, V.C.: Monomer systems for the gelcasting of foams. J. Eur. Ceram. Soc. 22 (2002) [9–10] 1395–1401

    Article  CAS  Google Scholar 

  9. Dhara, S., Bhargava, P.: A simple direct casting route to ceramic foams. J. Am. Ceram. Soc. 86 (2003) [10] 1645–1650

    Article  CAS  Google Scholar 

  10. Tang, F., Fudozi, H., Sakka, Y.: Fabrication of macroporous alumina with tailored porosity. J. Am. Ceram. Soc. 86 (2003) [12] 2050–2054

    Article  CAS  Google Scholar 

  11. Ortega, F.S., Valenzuela, F.A.O., Scurachio, C.H., Pandolfelli, V.C.: Alternative gelling agents for the gelcasting of ceramic foams. J. Eur. Ceram. Soc. 23 (2003) [1] 75–80

    Article  CAS  Google Scholar 

  12. Hotta, Y., Alberius, P.C.A., Bergstrom, L.: Coated polystyrene particles as templates for ordered macroporous silica structure with controlled wall thickness. J. Mater. Chem. 13 (2003) [3] 496–501

    Article  CAS  Google Scholar 

  13. Salomão, R., Brandi, J.: Filamentous alumina-chitosan porous structures produced by gelcasting. Ceram. Inter. 39 (2013) [7] 7751–7757

    Article  CAS  Google Scholar 

  14. Salomão, R., Brandi, J.: Macrostructures with hierarchical porosity produced from Al2O3-Al(OH)3-chitosan wet-spun fibers. Ceram. Inter. 39 (2013) [7] 8227–8235

    Article  CAS  Google Scholar 

  15. Salomão, R., Cardoso, P.H., Brandi, J.: Gelcasting porous alumina beads of tailored shape and porosity. Ceram. Inter. 40 (2014) [10B] 16595–16601

    Article  CAS  Google Scholar 

  16. Deng, Z.Y., Fukasawa, T., Ando, M.: High-surface-area alumina ceramics fabricated by the decomposition of Al(OH)3. J. Am. Ceram. Soc. 84 (2001) [3] 485–491

    Article  CAS  Google Scholar 

  17. Bhattacharya, I.N., Das, S.C., Mukherjee, P.S., Paul, S., Mitra, P.K.: Thermal decomposition of precipitated fine aluminium trihydroxide. Scandinavian J. Metal. 33 (2004) [4] 211–219

    Article  CAS  Google Scholar 

  18. Gan, B.K., Madsen, I.C., Hockridge, J.G.: In situ X-ray diffraction of the transformation of gibbsite to alpha-alumina through calcination: effect of particle size and heating rate. J. Appl. Crystallography 42 (2009) [4] 697–705

    Article  CAS  Google Scholar 

  19. Souza, A.D.V., Arruda, C.C., Fernandes, L., Antunes, M.L.P., Kiyohara, P.K., Salomão, R.: Characterization of aluminum hydroxide Al(OH)3 for its use as a porogenic agent in castable ceramics. J. Eur. Ceram. Soc. 35 (2015) [2] 803–812

    Article  CAS  Google Scholar 

  20. Salomão, R., Milena, L.M., Wakamatsu, M.H., Pandolfelli, V.C.: Hydrotalcite synthesis via co-precipitation reactions using MgO and Al(OH)3 precursors. Ceram. Inter. 37 (2011) [8] 3063–3070

    Article  CAS  Google Scholar 

  21. Domínguez, C., Chevalier, J., Torrecillas, R., Fantozzi, G.: Microstructure development in calcium hexaluminate. J. Eur. Ceram. Soc. 21 (2001) [3] 381–387

    Article  Google Scholar 

  22. Fernandes, L., Arruda, C.C., Souza, A.D.V., Salomão, R.: Characterization of synthetic amorphous silica (SAS) used in the ceramic industry. Interceram 63 (2014) [4] 220–224

    CAS  Google Scholar 

  23. Shah, S.R., Chokshi, A.H., Raj, R.: Porous Al2O3-Spinel based polycrystals that resist free-sintering. J. Am. Ceram. Soc. 91 (2008) [10] 3451–3454

    Article  CAS  Google Scholar 

  24. Braulio, M.A.L., Castro, J.F.R., Pagliosa, C., Bittencourt, L.R.M., Pandolfelli, V.C.: From macro to nanomagnesia: designing the in situ spinel expansion. J. Am. Ceram. Soc. 91 (2009) [9] 3090–3093

    Article  CAS  Google Scholar 

  25. Salomão, R., Pandolfelli, V.C.: Microsilica addition as an antihydration technique for magnesia-containing refractory castables. Am. Ceram. Soc. Bull. 86 (2007) [6] 9301–9309

    Google Scholar 

  26. Schneider, H., Schreuer, J., Hildman, B.: Structure and properties of mullite — a review. J. Eur. Ceram. Soc. 28 (2008) [2] 329–344

    Article  CAS  Google Scholar 

  27. Kitamura, A., Onizuka, K., Tanaka, K.: Hydration characteristics of magnesia. Taikabutsu Overseas 16 (1995) [3] 3–11

    Google Scholar 

  28. Salomão, R., Bittencourt, L.R.M., Pandolfelli, V.C.: A novel approach for magnesia hydration assessment in refractory castables. Ceram. Inter. 33 (2007) [5] 803–810

    Article  CAS  Google Scholar 

  29. Salomão, R., Arruda, C.C., Souza, A.D.V., Fernandes, L.: Novel insights into MgO hydroxylation: Effects of testing temperature, samples’ volume and solid load. Ceram. Inter. 40 (2014) [9B] 14809–14815

    Article  CAS  Google Scholar 

  30. Salomão, R., Arruda, C.C., Kawamura, M.A.: A systemic investigation on the hydroxylation behavior of caustic magnesia and magnesia sinter. Ceram. Inter. In Press, corrected proof, available online 10 July 2015

  31. Ismael, M.R., Salomão, R., Pandolfelli, V.C.: Refractory castables based on colloidal silica and hydratable alumina. Am. Ceram. Soc. Bull. 86 (2007) [9] 58–61

    Google Scholar 

  32. Bayley, J.T., Russell Jr., R.: Sintered spinel ceramics Am. Ceram. Soc. Bull. 47 (1968) [11] 1025–1029

    Google Scholar 

  33. Bayley, J.T., Russell Jr., R.: Preparation and properties of dense spinel ceramics in the MgAl2O4-Al2O3 system. Trans. Brit. Ceram. Soc. 68 (1969) [4] 159–164

    Google Scholar 

  34. Bayley, J.T., Russell Jr., R.: Magnesia-rich MgAl2O4 spinel ceramics Am. Ceram. Soc. Bull. 50 (1971) [5] 493–496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Salomão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salomão, R., Souza, A.D.V. & Cardoso, P.H.L. A Comparison of Al(OH)3 and Mg(OH)2 as Inorganic Porogenic Agents for Alumina. Interceram. - Int. Ceram. Rev. 64, 193–199 (2015). https://doi.org/10.1007/BF03401122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401122

Keywords

Navigation