Skip to main content
Log in

Preparation and Characterization of Anorthite-Alumina Composites

  • High-Performance Ceramics
  • Published:
Interceram - International Ceramic Review

Abstract

Anorthite powder prepared using sugar beet industry by-product and El-Tieh kaolin from Sinai, Egypt, was used to prepare anorthite-alumina composites. The physical and mechanical properties of the composites were studied as a function of the amount of added Al2O3. The phase composition and microstructure of composites containing various Al2O3 content (from 5 to 20 mass-%) were analysed. The results reveal that increases in Al2O3 content improve both the bulk density and the bending strength of the composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobayashi, Y., Kato, E.: Low-temperature fabrication of Anorthite ceramics. J Amer. Ceram. Soc. 77 (1994) [3] 833–834

    Article  CAS  Google Scholar 

  2. Kurama, S., Ozel, E.: The influence of different CaO source in the production of anorthite ceramics. Ceram Internat. 35 (2009) 827–830

    Article  CAS  Google Scholar 

  3. El-Maghraby, A., Mobarak, H.A., Bakr, I., Mörtel, H., Naga, S.M.: Anorthite ceramics based on plagioclases concentrated from gabbro. CIMTEC, 10th International Ceramics Congress & 3rd Forum on New Materials, Italy, 14–18 July (2002)

  4. Sutcu, M., Akkurt, S.: Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics. J Europ. Ceram. Soc. 30 (2010) 1785–1793

    Article  CAS  Google Scholar 

  5. Wendt, A.S., Olgaard, D.L., Mainprice, D.: A technique for the fabrication of fully dense Ca-rich plagioclase (An70-An100) samples suitable for studying the plastic rheology of bytownite (An80). J Mater. Sci. 34 (1999) 5733–5742

    Article  CAS  Google Scholar 

  6. Brennen, J.J., Prewo, K.M.: Silicon carbide-fiber-reinforced glass-ceramic-matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17 (1982) 371–383

    Article  Google Scholar 

  7. Sung, Y.M., Hwang, S.J.: Microstructural analysis of the calcium aluminosilicate (CAS) glass-ceramic matrix in SiCf/CAS composites deformed at a high temperature. J. Mater. Sci. 33 (1998) 5255–5258

    Article  CAS  Google Scholar 

  8. Lo, C.L., Duh, J.G., Chiou, B.S.: Low temperature sintering and crystallization behavior of low loss anorthite-based glass-ceramics. J. Mater. Sci. 38 (2003) 693–698

    Article  CAS  Google Scholar 

  9. He, L., Xia, G., Yang, D.: Synthesis and characterization of LTCC composites based on the spodumene-anorthite-crystallizable glass. J. Alloys Compd. 556 (2013) 12–19

    Article  CAS  Google Scholar 

  10. Nair, B.G., Zhao, Q., Cooper, R.F.: Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications. J. Mater. Sci. 42 (2007) 3083–3091

    Article  CAS  Google Scholar 

  11. Tsetsekou, A.: A comparison study of tialite ceramics doped with various oxide materials and tialite-mullite composites: microstructural, thermal and mechanical properties. J. Europ. Ceram. Soc. 25 (2005) 335–348

    Article  CAS  Google Scholar 

  12. Orlova, L.A., Popovich, N.V., Uvarova, N.E., Paleari, A., Sarkisov, P.D.: High-temperature resistant glass-ceramics based on Sr-anorthite and tialite phases. Ceram. Internat. 38 (2012) 6629–6634

    Article  CAS  Google Scholar 

  13. Agathopoulos, S., Tulyaganov, D.U., Marques, P.A.A.P., Ferro, M.C., Fernandes, M.H.V., Correia, R.N.: The fluorapatite-anorthite system in biomedicine. Biomater. 24 (2003) 1317–1331

    Article  CAS  Google Scholar 

  14. El-Maghraby, H.F., Aly, A.A., Naga, S.M.: Utilization of sugar-beet industry by product for the production of anorthite. Interceram (2013) [6] 426–428

  15. Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to ceramics. Wiley Interscience, New York (1976)

    Google Scholar 

  16. Wei, W.H., Halloran, J.W.: Phase transformation of diphasic aluminosilicate gels. J. Amer. Ceram. Soc. 71 (1988) 166–172

    Article  CAS  Google Scholar 

  17. Kara, F., Little, J.A.: Sintering behavior of pre-mullite powder obtained by chemical processing. J. Mater. Sci. 28 (1993) 1323–1326

    Article  CAS  Google Scholar 

  18. Kim, G.H., Sohn, I.I.: Effect of Al2O3 on the viscosity and structure of calcium silicate — based melts containing Na2O and CaF2. J. Non Crys. Solids 385 (2012) 1530–1537

    Article  CAS  Google Scholar 

  19. Kim, S.W., Chung, W.S., Sohn, K.S., Son, C.Y., Lee, S.: Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes. Mater. Sci. Eng. A517 (2009) 293–299

    Article  CAS  Google Scholar 

  20. Du, M., Bi, J.Q., Wang, W.L., Sun, X.L., Long, N.N., Bai, Y.J.: Fabrication and mechanical properties of SiO2-Al2O3-BNNPs and SiO2-Al2O3-BNNTs composites. Mater. Sci. Eng. A530 (2011) 669–674

    Article  CAS  Google Scholar 

  21. Tai, W.P., Kimura, K., Jinnai, K.: A new approach to anorthite porcelain bodies using nonplastic raw materials. J. Europ. Ceram. Soc. 22 (2002) 463–470

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Naga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naga, S.M., El-Maghraby, H.F. & Aly, A.A. Preparation and Characterization of Anorthite-Alumina Composites. Interceram. - Int. Ceram. Rev. 64, 34–37 (2015). https://doi.org/10.1007/BF03401098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03401098

Keywords

Navigation