Interceram - International Ceramic Review

, Volume 63, Issue 6, pp 286–289 | Cite as

Carbon Nanotube Reinforced Ceramic Composites: A Review

  • J. Wang
  • X. Deng
  • S. Du
  • F. Cheng
  • F. Li
  • L. Lu
  • H. ZhangEmail author
Review Papers


Carbon nanotubes (CNTs) have been extensively studied over the last two decades because of their excellent properties. In particular, they have been considered as promising reinforcements for development of novel ceramic composites (CCs). In this paper, current researches on CNT-reinforced CCs are briefly highlighted and reviewed. CNT-reinforced CCs possess remarkable electrical and thermal properties as well as superior mechanical properties compared to conventional CCs without using CNTs.


carbon nanotubes ceramic composites properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354 (1991) [6348] 56–58CrossRefGoogle Scholar
  2. [2]
    Sun, J., Gao, L., Li, W.: Colloidal processing of carbon nanotube/alumina composites. Chem. Mat. 14 (2002) [12] 5169–5172CrossRefGoogle Scholar
  3. [3]
    Peigney, A., Garcia, F.L., Estournès, C., Weibel, A., Laurent, C.: Toughening and hardening in double-walled carbon nanotube/nanostructured magnesia composites. Carbon 48 (2010) [7] 1952–1960CrossRefGoogle Scholar
  4. [4]
    Legorreta Garcia, F., Estournès, C., Peigney, A., Weibel, A., Flahaut, E., Laurent, C.: Spark-plasmasintering of double-walled carbon nanotube-magnesia nanocomposites. Scripta Materialia 60 (2009) [9] 741–744CrossRefGoogle Scholar
  5. [5]
    Thostenson, E.T., Karandikar, P.G., Chou, T.W.: Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites. J. Phys. D: Appl. Physics 38 (2005) [21] 3962CrossRefGoogle Scholar
  6. [6]
    Tatami, J., Katashima, T., Komeya, K., Meguro, T., Wakihara, T.: Electrically conductive CNT-dispersed silicon nitride ceramics. J. Am. Ceram. Soc. 88 (2005) [10] 2889–2893CrossRefGoogle Scholar
  7. [7]
    Ahmad, I., Kennedy, A., Zhu, Y.Q.: Wear resistant properties of multi-walled carbon nanotubes reinforced Al2O3 nanocomposites. Wear 269 (2010) [1] 71–78CrossRefGoogle Scholar
  8. [8]
    Ahmad, I., Unwin, M., Cao, H., Chen, H., Zhao, H., Kennedy, A., et al.: Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations. Composites Sci. and Technol. 70 (2010) [8] 1199–1206CrossRefGoogle Scholar
  9. [9]
    Zhang, S.C., Fahrenholtz, W.G., Hilmas, G.E., Yadlowsky, E.J.: Pressureless sintering of carbon nanotube-Al2O3 composites. J. Europ. Ceram. Soc. 30 (2010) [6] 1373–1380CrossRefGoogle Scholar
  10. [10]
    Bi, S., Hou, G., Su, X., Zhang, Y., Guo, F.: Mechanical properties and oxidation resistance of α-alumina/multi-walled carbon nanotube composite ceramics. Mater. Sci. and Eng. A 528 (2011) [3] 1596–1601CrossRefGoogle Scholar
  11. [11]
    Bi, S., Su, X., Hou, G., Liu, C., Song, W.-L., Cao, M.-S.: Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram. Int. 39 (2013) [5] 5979–5983CrossRefGoogle Scholar
  12. [12]
    Kasperski, A., Weibel, A., Estournès, C., Laurent, C., Peigney, A.: Preparation-microstructure-property relationships in double-walled carbon nanotubes/alumina composites. Carbon 53 (2013) 62–72CrossRefGoogle Scholar
  13. [13]
    Balázsi, C., Shen, Z., Kónya, Z., Kasztovszky, Z., Wéber, F., Vértesy, Z., et al.: Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Composites Sci. and Technol. 65 (2005) [5] 727–733CrossRefGoogle Scholar
  14. [14]
    Balázsi, C., Kónya, Z., Wéber, F., Biró, L.P., Arató, P.: Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mater. Sci. and Eng. C 23 (2003) [6] 1133–1137CrossRefGoogle Scholar
  15. [15]
    Balázsi, C., Fényi, B., Hegman, N., Kövér, Z., Wéber, F., Vértesy, Z., et al.: Development of CNT/Si3N4 composites with improved mechanical and electrical properties. Composites Part B: Engineering 37 (2006) [6] 418–424CrossRefGoogle Scholar
  16. [16]
    Balázsi, C., Sedláčková, K., Czigány, Z.: Structural characterization of Si3N4-carbon nanotube interfaces by transmission electron microscopy. Composites Sci. and Technol. 68 (2008) [6] 1596–1599CrossRefGoogle Scholar
  17. [17]
    Liu, X., Huang, Z., Xiang, C., Pan, Y., Huang, L.: Carbon nanotubes/silicon nitride ceramic matrix composites fabricated by reaction-bonded process. J. Chin. Ceram. Soc. 34 (2006) [2] 133–136Google Scholar
  18. [18]
    Gu, Z., Yang, Y., Li, K., Tao, X., Eres, G., Howe, J.Y., et al.: Aligned carbon nanotube-reinforced silicon carbide composites produced by chemical vapor infiltration. Carbon 49 (2011) [7] 2475–2482CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • J. Wang
    • 1
  • X. Deng
    • 1
  • S. Du
    • 1
  • F. Cheng
    • 1
  • F. Li
    • 1
  • L. Lu
    • 2
  • H. Zhang
    • 1
    Email author
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.College of Chemical Engineering and TechnologyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations