Journal of Hydrodynamics

, Volume 18, Issue 1, pp 471–475 | Cite as

A fictitious domain method for particulate flows

  • Zhaosheng Yu
  • Xueming Shao
  • Anthony Wachs
Session A8


The distributed Lagrange multiplier based fictitious domain (DLM/FD) method was proposed by Glowinski and his coworkers for the simulation of particulate flows. We have recently extended the DLM/FD method to deal with the particle motion in a Bingham fluid and the particulate flow with heat transfer. The progresses are reported in this paper.

Key words

fictitious domain method Lagrange multiplier particulate flows Bingham heat transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    HU H H, PATANKAR A, ZHU M Y. Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique[J]. J. Comput. Phys., 2001, 169: 427–462.MathSciNetCrossRefGoogle Scholar
  2. [2]
    LADD A J C, VERBERG R. Lattice-Boltzmann simulations of particle-fluid suspensions[J]. J. Stat. Phys., 2001, 104: 1191–1251.MathSciNetCrossRefGoogle Scholar
  3. [3]
    GLOWINSKI R, PAN T W, HESLA T I, JOSEPH D D. A distributed Lagrange multiplier/fictitious domain method for particulate flows[J]. Int. J. Multiphase Flow, 1999, 25: 755–794.MathSciNetCrossRefGoogle Scholar
  4. [4]
    GLOWINSKI R, PAN T W, HESLA T I, JOSEPH D D, PERIAUX J. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow[J]. J. Comput. phys., 2001, 169: 363–426.MathSciNetCrossRefGoogle Scholar
  5. [5]
    YU Z, PHAN-THIEN N, FAN Y, TANNER R I. Viscoelastic mobility problem of a system of particles[J]. J. Non-Newtonian Fluid Mech., 2002, 104:87–124.CrossRefGoogle Scholar
  6. [6]
    YU Z, PHAN-THIEN N, TANNER R I. Dynamic simulation of sphere motion in a vertical tube[J]. J. Fluid Mech., 2004, 518:61–93.CrossRefGoogle Scholar
  7. [7]
    PEYSSON Y. Solid/liquid dispersions in drilling and production[J]. Oil & Gas Science and Technology-Rev. IFP, 2004, 59:11–21.CrossRefGoogle Scholar
  8. [8]
    HE Y B, LASKOWSKI J S, KLEIN B. Particle movement in non-Newtonian slurries: the effect of yield stress on dense medium separation[J]. Chemical Engineering Science, 2001, 56:2991–2998.CrossRefGoogle Scholar
  9. [9]
    ANSLEY R W, SMITH T N. Motion of spherical particles in a Bingham pastic[J]. AIChE J., 1967, 13:1193–1196.CrossRefGoogle Scholar
  10. [10]
    BERIS A N, TSAMOPOULOS J A, ARMSTRONG R C, BROWN R A. Creeping motion of a sphere through a Bingham plastic[J]. J. Fluid Mech., 1985, 158:219–244.MathSciNetCrossRefGoogle Scholar
  11. [11]
    BLACKERY M, MITSOULIS E. Creeping motion of a sphere in tubes filled with a Bingham fluid[J]. J. Non-Newtonian Fluid Mech., 1997, 70:59–77.CrossRefGoogle Scholar
  12. [12]
    BEAULNE M, MITSOULIS E. Creeping motion of a sphere in tubes filled with Herschel-Bulkley fluids[J]. J. Non-Newtonian Fluid Mech., 1997, 71:55–71.CrossRefGoogle Scholar
  13. [13]
    LIU B T, MULLER S J, DENN M.M. Convergence of a regularization method for creeping flow of a Bingham material about a rigid sphere[J]. J. Non-Newtonian Fluid Mech., 2002, 102:179–191.CrossRefGoogle Scholar
  14. [14]
    LIU B T, MULLER S J, DENN M.M. Interaction of two rigid spheres translating collinearly in creeping flow in a Bingham material[J]. J. Non-Newtonian Fluid Mech., 2003, 113: 49–67.CrossRefGoogle Scholar
  15. [15]
    DE BESSES B D, MAGNIN A, JAY P. Sphere drag in a viscoplastic fluid[J]. AIChE J., 2004, 50:2627–2629.CrossRefGoogle Scholar
  16. [16]
    DEDEGIL M Y. Drag coefficient and settling velocity of particles in non-Newtoian suspensions[J]. Journal of Fluids Engineering, 1987, 109:319.CrossRefGoogle Scholar
  17. [17]
    ATAPATTU D D, CHHABRA R P, UHLHERR P H T. Wall effect for spheres falling at small Reynolds number in a viscoplastic medium[J]. J. Non-Newtonian Fluid Mech., 1990, 38: 3142.CrossRefGoogle Scholar
  18. [18]
    ATAPATTU D D, CHHABRA R P, UHLHERR P H T. Creeping sphere motion in Herschel-Bulkley fluids: Flow field and drag[J]. J. Non-Newtonian Fluid Mech., 1995, 59:245–265.CrossRefGoogle Scholar
  19. [19]
    MCKENNA T F, SPITZ R, COKLJAT D. Heat transfer from catalysts with computational fluid dynamics[J]. AIChE J., 1999, 45:2392–2410.CrossRefGoogle Scholar
  20. [20]
    DEAN E J, GLOWINSKI R. Operator-splitting methods for the simulation of Bingham visco-plastic flow[J]. Chin. Ann. Math. B, 2002, 23:187–204.MathSciNetCrossRefGoogle Scholar
  21. [21]
    YU Z, SHAO X, WACHS A. A fictitious domain method for particulate flows with heat transfer[J]. J. Comput. Phys. (in press).Google Scholar

Copyright information

© China Ship Scientific Research Center 2006

Authors and Affiliations

  1. 1.Department of MechanicsZhejiang UniversityHangzhouChina
  2. 2.Department of Mechanics, State Key Laboratory of Fluid Power Transmission and ControlZhejiang UniversityHangzhouChina
  3. 3.Fluid Mechanics DepartmentInstitut Francais du PétroleRueil-Malmaison CedexFrance

Personalised recommendations