Advertisement

Journal of Hydrodynamics

, Volume 18, Issue 1, pp 26–30 | Cite as

Recent progress in dynamics of boundary layer transition

  • Cun-Biao Lee
  • Rui-qu Li
Keynote Lecture
  • 1 Downloads

Abstract

The dynamics in transitional boundary layers involve interactions among various flow structures. It is not easy to identify unambiguously the dominant structures which give the major turbulent production. In this paper, the flat plate boundary layer was studied by means of two-dimensional hot film velocity measurements and flow visualization. Our results present direct evidences of the existence of soliton-like coherent structures that are dominant flow structures in turbulent production processes for both the early and late stages of boundary layer transition. Furthermore, it is concluded that in boundary layer flows these soliton-like coherent structures are the building blocks to produce other coherent structures.

Key words

transition boundary layer coherent structure soliton-like structures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bake, S., Meyer, D. G. W., Rist, U. 2002 J. Fluid Mech. 459, 217CrossRefGoogle Scholar
  2. [2]
    Borodulin, V. I., Goponenko, V. R., Kachanov, Y. S., Meyer, D. G. W., Rist, U., Lian, Q. X., Lee, C. B. 2002 Theoet. Comput. Fluid Dynamics 15, 17Google Scholar
  3. [3]
    Borodulin, V. I., Kachanov, Y. S. 1990 In Proc. Scientific & Methodological Seminar on Ship Hydrodynamic, Bulg. Hydrodynamics Center, Varna, 99–1–99–10Google Scholar
  4. [4]
    Hama, F. R., Long, J. D., Hegarty, J. C. 1957 J. Appl. Phys., 28, 388CrossRefGoogle Scholar
  5. [5]
    Hama, F. R., Nautant, J. 1963 In Proc. of Heat Transfer & Fluid Mech. Inst. Stanford Univ. Press, Palo Alto, pp. 77–93Google Scholar
  6. [6]
    Hamilton, J. M., Kim, J. & Waleffe, F. 1995 J. Fluid Mech., 287, 317CrossRefGoogle Scholar
  7. [7]
    Kachnaov, Y. S. 1994 Annu. Rev. Fluid Mech. 26, 411CrossRefGoogle Scholar
  8. [8]
    Kachanov, Y. S., Ryzhov, O. S. 1992 Sib. Fiz. Tekh. Z. 1, 34Google Scholar
  9. [9]
    Kachanov, Y. S., Ryzhov, O. S. & Smith, F. T. 1993 J. Fluid Mech. 251, 273MathSciNetCrossRefGoogle Scholar
  10. [10]
    Klebanoff, P. S., Tidstrom, K. D., Sargent, L. M. 1962 J. Fluid Mech. 12, 1CrossRefGoogle Scholar
  11. [11]
    Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstaller, W. P. 1967 J. Fluid Mech. 30, 741.CrossRefGoogle Scholar
  12. [12]
    Kovasznay, L. S., Komoda, H., Vasudeva, B. R 1962 In Proc. of Heat Transfer & Fluid Mech. Inst. Stanford Univ. Press, Palo Alto, pp.1–26Google Scholar
  13. [13]
    Lee, C. B. 1998 Phys. Letts A 247, 397CrossRefGoogle Scholar
  14. [14]
    Lee, C. B. 2000 Phys. Rev. E62, 3659Google Scholar
  15. [15]
    Lee, C. B. 2001a Exps. In Fluids, 30, 354CrossRefGoogle Scholar
  16. [16]
    Lee, C. B. 2001b Acta Physica Sinica, 50, 182Google Scholar
  17. [17]
    Lee, C. B. 2001c In Proc. of Heat Transfer & Fluid Mech. Inst. California State University Press, Sacramento, pp.61–80Google Scholar
  18. [18]
    Morkovin, M. V. In AFFDL Tech. Rep.68Google Scholar
  19. [19]
    Morkovin, M. V. 1984 In Transition in Turbines, NASA Conf. Publ., pp.161Google Scholar
  20. [20]
    Reynolds, O. 1883 Royal Society, Phil. Trans. 35, 84Google Scholar
  21. [21]
    Tritton S. J. 1988 Physical Fluid Dynamics (2nd ed.). Oxford: Oxford University PresszbMATHGoogle Scholar

Copyright information

© China Ship Scientific Research Center 2006

Authors and Affiliations

  1. 1.State Key Laboratory for Turbulence Research and Complex SystemPeiking UniversityBeijingChina

Personalised recommendations