Skip to main content
Log in

Bioaktive Glas-Scaffolds beschichtet mit Zein, einem pflanzlichen Protein: Entwicklung und Eigenschaften

  • Forschung & Technik
  • Published:
Keramische Zeitschrift

Kurzfassung

Die vorliegende Studie beschreibt die Beschichtung poröser Gerüststrukturen, sogenannter Scaffolds (auf Basis von 45S5 bioaktivem Glas), mit Zein, einem Speicherprotein gewonnen aus Mais. Da bioaktive Scaffolds durch ihren Herstellungsprozess Mikrorisse an der Oberfläche aufzeigen, sind ihre mechanischen Festigkeiten extrem schwach. Durch Auftragen einer Polymerschicht können diese Risse gefüllt und überbrückt werden, was zur Erhöhung der Bruchfestigkeit und -arbeit führt. Dazu werden gesinterte Glas-Scaffolds in eine Lösung aus Zein getaucht. Nach dem Abdampfen des Lösemittels bleibt ein dünner Polymerfilm von ~10 μm auf der Oberfläche zurück. Die Mikrostruktur und Morphologie wurde anschließend mit Rasterelektronenmikroskopie (REM) untersucht. Des Weiteren konnte durch Auslagerung in simulierte Körperflüssigkeit (SBF) der Einfluss der Beschichtung auf das bioaktive Verhalten der Scaffolds getestet werden. Der Nachweis für die Bildung von Hydroxylapatit wurde durch REM und Fourier-Transform-Infrarotspektrometrie (FTIR) erbracht. Auch konnte die Druckfestigkeit durch das Aufbringen einer Zeinschicht um den Faktor 5 erhöht werden.

Abstract

Bioactive Glass-based Scaffolds Coated with Zein, a Plant-derived Protein: Development and Characteristics

The present study describes the coating of porous scaffolds (based on 45S5 bioactive glass and produced by the foam replica method) with zein, a storage protein derived from corn. As bioactive scaffolds show microcracks on the surface, the mechanical performance is very weak. By applying a polymer layer, these cracks can be filled and bridged, which leads to enhanced fracture strength and toughness. Therefore, bioactive glass-based scaffolds are immersed in a zein solution. After evaporation of the solvent, a thin polymer film of ~10 μm remains on the surface. The microstructure and morphology were investigated by scanning electron microscopy (SEM). Furthermore, the influence of the coating on the bioactive behavior of the scaffolds was tested by immersion in simulated body fluid (SBF). The formation of hydroxyapatite was analyzed by SEM and Fourier Transform Infrared Spectrometry (FTIR). By applying a zein coating, the compressive strength was increased by factor 5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. García-Gareta, E., Coathup, M.J., Blunn, G.W.: Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81 (2015) 112–121

    Article  Google Scholar 

  2. Dumic-Cule, I., Pecina, M., Jelic, M., Jankolija, M., Popek, I., Grgurevic, L., et al. Biological aspects of segmental bone defects management. Int. Orthop. 39 (2015) 1005–1011

    Article  Google Scholar 

  3. Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell, J.A.C., et al.: The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28 (2007) 45–54

    Article  CAS  Google Scholar 

  4. Sulaiman, S.B., Keong, T.K., Cheng, C.H., Saim, A.B., Idrus, R.B.H. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res. 137 (2013) 1093–1101

    Google Scholar 

  5. Tarafder, S., Davies, N.M., Bandyopadhyay, A., Bose, S.: 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater. Sci. 1 (2013) 1250

    Article  CAS  Google Scholar 

  6. Vallet-Regí, M., Ragel, C.V., Salinas, A.J. Glasses with Medical Applications. Europ. J. Inorg. Chem. 2003 (2003) 1029–1042

    Article  Google Scholar 

  7. Hench, L.L.: Opening paper 2015- Some comments on Bioglass: Four Eras of Discovery and Development. Biomed. Glas. 1 (2015)

  8. Yunos, D.M., Bretcanu, O., Boccaccini, A.R. Polymer-bioceramic composites for tissue engineering scaffolds. J. Mater. Sci. 43 (2008) 4433–4442

    Article  Google Scholar 

  9. Chen, Q.Z., Thompson, I.D., Boccaccini, A.R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 27 (2006) 2414–2425

    Article  CAS  Google Scholar 

  10. Corradini, E., Curti, P.S., Meniqueti, A.B., Martins, A.F., Rubira A.F., Muniz, E.C. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Internat. J. Mol. Sci. 15 (2014) 22438–22470

    Article  CAS  Google Scholar 

  11. Dong, J., Sun, Q., Wang, J.Y.: Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials 25 (2004) 4691–4697

    Article  CAS  Google Scholar 

  12. Zhou, P., Xia, Y., Wang, J., Liang, C., Yu, L., Tang, W., et al.: Antibacterial properties and bioactivity of HACC- and HACC–Zein-modified mesoporous bioactive glass scaffolds. J. Mater. Chem. B. 1 (2013) 685

    Article  CAS  Google Scholar 

  13. Jiang, Q., Reddy, N., Yang, Y. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater. 6 (2010) 4042–4051

    Article  CAS  Google Scholar 

  14. Yao, C., Li, X., Song, T. Electrospinning and crosslinking of zein nanofiber mats. J. Appl. Polym. Sci. 103 (2007) 380–385

    Article  CAS  Google Scholar 

  15. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907–2915

    Article  CAS  Google Scholar 

  16. Magoshi, J., Nakamura, S., Murakami, K.I. Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. J. Appl. Polym. Sci. 45 (1992) 2043–2048

    CAS  Google Scholar 

  17. Filgueiras, M.R., La Torre, G., Hench, L.L. Solution effects on the surface reactions of a bioactive glass. J. Biomed. Mater. Res. 27 (1993) 445–453

    Article  CAS  Google Scholar 

  18. Mukundan, L.M., Nirmal, R., Vaikkath, D., Nair, P.D.: A new synthesis route to high surface area sol gel bioactive glass through alcohol washing: a preliminary study. Biomatter. 3 (2013)

  19. Marelli, B., Ghezzi, C.E., Barralet, J.E., Boccaccini, A.R., Nazhat, S.N.: Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds. Biomacromolecules 11 (2010) 1470–1479

    Article  CAS  Google Scholar 

  20. Müller, V., Piai, J.F., Fajardo, A.R., Fávaro, S.L., Rubira, A.F., Muniz, E.C.: Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release. J. Nanomater. 2011 (2011) 6

  21. Sessa, D.J., Mohamed, A., Byars, J.A. Chemistry and physical properties of melt-processed and solution-cross-linked corn zein. J. Agric. Food. Chem. 56 (2008) 7067–7075

    Article  CAS  Google Scholar 

  22. Ben-Nissan, B.: Advances in Calcium Phosphate Biomaterials. Berlin, Heidelberg: Springer (2014)

  23. Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. 62 (2002) 600–612

    Article  CAS  Google Scholar 

  24. Stoch, A., Jastrzębski, W., Brożek, A., Trybalska, B., Cichocińska, M., Szarawara, E.: FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J. Mol. Struct. 511–512 (1999) 287–294

    Article  Google Scholar 

  25. Rehman, I., Knowles, J.C., Bonfield, W. Analysis of in vitro reaction layers formed on Bioglass using thin-film X-ray diffraction and ATR-FTIR microspectroscopy. J. Biomed. Mater. Res. 41 (1998) 162–166

    Article  CAS  Google Scholar 

  26. Moustafa, Y.M., El-Egili, K. Infrared spectra of sodium phosphate glasses. J. Non. Cryst. Solids. 240 (1998) 144–153

    Article  CAS  Google Scholar 

  27. Cerruti, M., Greenspan, D., Powers, K.: Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Biomaterials 26 (2005) 1665–1674

    Article  CAS  Google Scholar 

  28. Oliveira, J.M., Silva, S.S., Malafaya, P.B., Rodrigues, M.T., Kotobuki, N., Hirose, M., et al.: Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. J. Biomed. Mater. Res. A 91 (2009) 175–186

    Article  Google Scholar 

  29. Yusufoglu, Y., Akinc, M. Deposition of Carbonated Hydroxyapatite (CO3HAp) on Poly( Methylmethacrylate) Surfaces by Decomposition of Calcium-EDTA Chelate. J. Amer. Ceram. Soc. 91 (2008) 3147–3153

    Article  CAS  Google Scholar 

  30. Hench, L.L., Jones, J.R., Sepulveda, P.: Bioactive Materials for Tissue Engineering Scaffolds. Futur. Strateg. Tissue Organ Replace. Imperial College Press (2002) 3–24

    Chapter  Google Scholar 

  31. Dorozhkin, S., Ajaal, T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc. Inst. Mech. Eng. H. 223 (2009) 459–470

    Article  CAS  Google Scholar 

  32. Xue, W., Bandyopadhyay, A., Bose, S. Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering. J. Biomed. Mater. Res. B. Appl. Biomater. 91 (2009) 831–838

    Article  Google Scholar 

  33. Wu, C., Ramaswamy, Y., Boughton, P., Zreiqat, H.: Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Acta Biomater. 4 (2008) 343–53

    Article  CAS  Google Scholar 

  34. Yunos, D.M., Ahmad, Z., Salih, V., Boccaccini, A.R. Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass®-derived foams. J. Biomater. Appl. 27 (2013) 537–551

    Article  CAS  Google Scholar 

  35. Metze, A.L., Grimm, A., Nooeaid, P., Roether, J.A., Hum, J., Newby, P.J., et al. Gelatin Coated 45S5 Bioglass®-Derived Scaffolds for Bone Tissue Engineering. Key Eng. Mater. 541 (2013) 31–39

    Article  Google Scholar 

  36. Yao, Q., Nooeaid, P., Roether, J.A., Dong, Y., Zhang, Q., Boccaccini, A.R. Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram. Internat. 39 (2013) 7517–7522

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hum, J., Potschka, J. & Boccaccini, A. Bioaktive Glas-Scaffolds beschichtet mit Zein, einem pflanzlichen Protein: Entwicklung und Eigenschaften. Keram. Z. 69, 34–41 (2017). https://doi.org/10.1007/BF03400290

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03400290

Stichwörter:

Navigation