Swiss Journal of Economics and Statistics

, Volume 148, Issue 2, pp 111–135 | Cite as

Introduction to Energy Systems Modelling

  • Andrea Herbst
  • Felipe Toro
  • Felix Reitze
  • Eberhard Jochem
Open Access


The energy demand and supply projections of the Swiss government funded by the Swiss Federal Office of Energy and carried out by a consortium of institutes and consulting companies are based on two types of energy models: macroeconomic general equilibrium models and bottom-up models for each sector. While the macroeconomic models are used to deliver the economic, demographic and policy framework conditions as well as the macroeconomic impacts of particular scenarios, the bottom-up models simulate the technical developments in the final energy sectors and try to optimise electricity generation under the given boundary conditions of a particular scenario. This introductory article gives an overview of some of the energy models used in Switzerland and — more importantly — some insights into current advanced energy system modelling practice pointing to the characteristics of the two modelling types and their advantages and limitations.


energy modelling bottom-up top-down hybrid energy system modelling Switzerland 


C63 L61 


  1. Alexandridis, K. T., and B. C. Pijanowski (2006), “Modular Bayesian Inference and Learning of Decision Networks as Stand-Alone Mechanisms of the MABEL Model: Implications for Visualization, Comprehension, and Policy-Making”, Argonne National Laboratory and the University of Chicago.Google Scholar
  2. Bahn, O., and C. Frei (2000), “GEM-E3 Switzerland: A Computable General Equilibrium Model applied for Switzerland”, Paul Scherrer Institut (PSI), General Energy Research Department (ENE), Villigen.Google Scholar
  3. Bataille, C. G. F. (2005), “Design and Application of a Technologically Explicit Hybrid Energy-Economy Policy Model with Micro and Macro Economic Dynamics”, Thesis in the School of Resource and Environmental Management, Simon Fraser University.Google Scholar
  4. Bernard, A., and M. Vielle (2008), “GEMINI-E3, A General Equilibrium Model of International-National Interactions between Economy, Energy and Environment”, Computational Management Science, 5(3), pp. 173–206.CrossRefGoogle Scholar
  5. BFE (Bundesamt für Energie) (2007), Die Energieperspektiven 2035 — Band 1 Synthese, Bern.Google Scholar
  6. Böhringer, C. (1998), “The Synthesis of Bottom-Up and Top-Down in Energy Policy Modelling”, Energy Economics, 20, pp. 233–248.CrossRefGoogle Scholar
  7. Böhringer, C., and A. Löschel (2006), “Promoting Renewable Energy in Europe: A Hybrid Computable General Equilibrium Approach”, Special Issue of the Energy Journal, Hybrid modeling of energy-environment policies: Reconciling bottom-up and top-down.Google Scholar
  8. Böhringer, C., and T. Rutherford (2006), “Combining Top-Down and Bottom-Up Analysis in Energy Policy Analysis”, Technical Report Discussion paper 06-07, ZEW.Google Scholar
  9. Böhringer, C., and T. Rutherford (2008), “Combining Bottom-Up and Top-Down”, Energy Economics, 30, pp. 574–596.CrossRefGoogle Scholar
  10. CAMECON (2011), Cambridge Econometrics, website:
  11. Capros, P., et al. (1996a), “Double Dividend Analysis: First Results of a General Equilibrium Model (GEM-E3) Linking the EU-12 Countries”, in Environmental Fiscal Reform and Unemployment, C. Carraro and D. Siniscalco, eds., Kluwer Academic Publishers.Google Scholar
  12. Capros, P., and P. Georgakopoulos (1996b), “Coordinated versus Uncoordinated European Carbon Tax Solutions Analysed with GEM-E3 Linking the EU-12 Countries”, in Economic Aspects of Environmental Policy, S. Proost, eds., Kluwer Academic Publishers.Google Scholar
  13. Catenazzi, G. (2009), “Advances in Techno-Economic Energy Modeling: Costs, Dynamics and Hybrid Aspects”, Dissertation, Swiss Federal Institute of Technology (ETH), Zürich.Google Scholar
  14. CES (2008), “The GEM-E3 Model. A General Equilibrium Model for Europe and the World”, Centre for Economic Studies, KULeuven, Belgium.Google Scholar
  15. De Vries, B., M. Janssen, A. Beusen, et al. (1999), “Perspectives on Global Energy Futures: Simulations with the TIME Model”, Energy Policy, 27, pp, 477–494.CrossRefGoogle Scholar
  16. E3Mlab (2007), “The Primes Model: Version Used for the 2007 Scenarios for the European Commission including new Sub-Models Recently Added”, website:
  17. Enerdata (2011), Enerdata global energy intelligence, website:
  18. ETSAP (2001), ETSAP, website:
  19. ETSAP (2005), “Documentation for the TIMES Model: Part 1”, April 2005, website:
  20. Eurostat (2008), “Eurostat Manual of Supply, Use and Input-Output Tables”, Methodologies and Workingpapers, 2008 edition, Luxembourg.Google Scholar
  21. EWI (2011), Energiewirtschaftliches Institut an der Universität zu Köln, website:
  22. Fichtner, W., D. Möst, M. Wietschel, C. Weinhardt, and O. Rentz (2003), „Zur strategischen Planung bei Energieversorgern in liberalisierten Energiemärkten“, WiSt- Wirtschaftswissenschaftliches Studium, 32 (12), pp. 707–713.CrossRefGoogle Scholar
  23. FSO (2010), Federal Statistical Office, website:
  24. Foley, J., et al. (2005), “Global Consequences of Land Use”, Science, 309, 570, DOI: 10.1126/science.1111772.Google Scholar
  25. Forrester, J. W. (1958), “Industrial Dynamics — A Major Breakthrough for Decision Makers”, Harvard Business Review, 36(4), pp. 37–66.Google Scholar
  26. Forrester, J. W. (1962), Industrial Dynamics, 2nd edition, MIT Press, John Wiley & Sons, New York.Google Scholar
  27. Forrester, J. W. (1971), World Dynamics, Wright-Allen Press, Cambridge MA.Google Scholar
  28. Forrester, J. W. (1980), “System Dynamics — Future Opportunities”, in System Dynamics. TIMS Series in the Management Sciences, Augusto A. Legasto, Jay W. Forrester, and James M. Lyneis, eds., vol. 14, pp. 7–21, Amsterdam: North-Holland.Google Scholar
  29. Genoese, M., F. Sensfuss, and D. Moest (2007), “Power Plant Investments under Different Emission Allocation Schemes”, Proceedings of the 9th IAEE European Conference on Energy Economics (10–12 June 2007), Florence, Italy.Google Scholar
  30. Greene, W. H. (2003), Econometric Analysis, Fifth Edition, New York University, Pearson Education, New Jersey.Google Scholar
  31. Heaps, C. (2002), “Global Scenario Group Futures”, SEI, technical notes, report 9.Google Scholar
  32. Heemskerk, M., K. Wilson, and M. Pavao-Zuckerman (2003), “Conceptual models as tools for communication across disciplines”, Conservation Ecology, 7(3): 8.CrossRefGoogle Scholar
  33. Hourcade, J. C., et al. (2006), “Hybrid Modeling: New Answers to Old Challenges”, The Energy Journal 2, Special issue (2006) pp. 1–12, C.I.R.E.D., Nogent-sur-Marne cedex.Google Scholar
  34. IEA (2010), “World Energy Outlook 2010”, International Energy Agency, Paris Cedex, France.Google Scholar
  35. IEA (2011), “World Energy Model — Methodology And Assumptions”, International Energy Agency, Paris Cedex, France.Google Scholar
  36. Jochem, E., T. Barker, S. Scrieciu, W. Schade, N. Helfrich, O. Edenhofer, N. Bauer, S. Marchand, J. Neuhaus, S. Mima, P. Criqui, J. Morel, B. Chateau, A. Kitous, G. J. Nabuurs,, M. J. Schelhaas, T. Groen, L. Riffeser, F. Reitze, E. Jochem, G. Catenazzi, M. Jakob, B. Aebischer, K. Kartsoni, W. Eichhammer, A. Held, M. Ragwitz, U. Reiter, S. Kypreos, and H. Turton (2007), “EU-Project ADAM: Adaption and Mitigation Strategies: Supporting European Climate Policy — Deliverable M1.1: Report of the Base Case Scenario for Europe and Full Description of the Model System”, Fraunhofer ISI, Karlsruhe, November 2007.Google Scholar
  37. Jochem, E., T. Barker, S. Scrieciu, W. Schade, N. Helfrich, O. Edenhofer, N. Bauer, S. Marchand, J. Neuhaus, S. Mima, P. Criqui, J. Morel, B. Chateau, A. Kitous, G. J. Nabuurs,, M. J. Schelhaas, T. Groen, L. Riffeser, F. Reitze, E. Jochem, G. Catenazzi, M. Jakob, B. Aebischer, K. Kartsoni, W. Eichhammer, A. Held, M. Ragwitz, U. Reiter, S. Kypreos, and H. Turton (2007) (2008), “EU-Project ADAM: Adaption and Mitigation Strategies: Supporting European Climate Policy — Deliverable M1.2: Report of the Reference Case Scenario for Europe”, Fraunhofer ISI, Karlsruhe, November 2008.Google Scholar
  38. Jochem, P. (2009), “A CO2 Emission Trading Scheme for German Road Transport — Assessing the Impacts using a Meso Economic Model with Multi-Agent Attributes”, Nomos, Baden-BadenCrossRefGoogle Scholar
  39. Krail, M., and W. Schade (2010), “The Potential of Alternative Fuel Cars for Achieving CO2 Reduction Targets in EU27”.Google Scholar
  40. krause, F. (1996), “The Costs of Mitigating Carbon Emissions: A Review of Methods and Findings from European Studies”, Energy Policy Vol 24, no 10, p. 899–915.CrossRefGoogle Scholar
  41. Kumbaroglu, G., and R. Madlener (2001), “A Description of the Hybrid Bottom-Up CGE Model SCREEN with an Application to Swiss Climate Policy Analysis”, CEPE Working Paper No. 10, Zürich.Google Scholar
  42. Linares, P., F. J. Santos, M. Ventosa, and L. Lapiedra (2008), “Incorporating Oligopoly, CO2 Emissions Trading and Green Certificates into a Power Generation Expansion Model”, Automatica, vol. 44, no. 6, pp. 1608–1620.CrossRefGoogle Scholar
  43. Löschel, A. (2002), “Technological Change in Economic Models of Environmental Policy: A Survey”, Ecological Economics, 43, pp. 105–126.CrossRefGoogle Scholar
  44. Loulou, R., G. Goldstein, and K. Noble (2004), “Documentation for the MARKAL Family of Models”, Energy Technology Systems Analysis Programme (ETSAP), website: Scholar
  45. Manne, A, and R. G. Richels (1990), “CO2 Emission Limits: An Economic Cost Analysis for the USA”, The Energy Journal Vol. 11(2), pp. 51–74CrossRefGoogle Scholar
  46. Manne, A., and R. G. Richels (2004), “MERGE: A Model for Evaluating the Regional and Global Effects of GHG Reduction Policies”, website: Scholar
  47. Mayer, H. (2007), “Calculation and Analysis of a Hybrid Energy Input-Output Table for Germany within the Environmental-Economic Accounting (EEA)”, Paper presented at the 16th International Input-Output Conference 2–6 July 2007 Istanbul/Turkey, Statistisches Bundesamt, Wiesbaden.Google Scholar
  48. Messner, S., and M. Strubegger (1995), “User’s Guide for MESSAGE III”, WP-95-69. International Institute for Applied Systems Analysis, Laxenburg, Austria.Google Scholar
  49. Möst, D., and M. Genoese (2009), “Market Power in the German Wholesale Electricity Market”, The Journal of Energy Markets, 2 (2), pp. 47–74.CrossRefGoogle Scholar
  50. Mundaca, L., and L. Neij (2009), “A Multi-Criteria Evaluation Framework for ‘Tradable White Certificate’ Schemes”, Energy Policy, 37(11), pp. 4557–4573.CrossRefGoogle Scholar
  51. Nathani, C., M. Wickart, R. Oleschak, and R. van Nieuwkoop (2006), “Estimation of a Swiss Input-Output Table for 2001”, CEPE Report No. 6, Centre for Energy Policy and Economics (CEPE), Zürich.Google Scholar
  52. Nathani, C. (2006), “Material Use and Induced Energy Demand: an Input-Output Analysis,”, ETH Zürich, Paper to be presented at the Intermediate International Input-Output Meeting on Sustainability, Trade and Productivity, Japan.Google Scholar
  53. Prognos AG (2011), „Das Energiewirtschaftliche Gesamtkonzept. Konzept eines beschleunigten Ausstiegs aus der Kernenergie in Deutschland“, im Auftrag der Vereinigung der Bayerischen Wirtschaft e. V.Google Scholar
  54. Russ, P., and P. Criqui (2007), “Post-Kyoto CO2 Emission Reduction: The Soft Landing Scenario Analysed with POLES and Other World Models”, IPTS and Grenoble University.Google Scholar
  55. Schade, W. (2004), “Strategic Sustainability Analysis: Concept and Application for the Assessment of European Transport Policy”, Dissertation, NOMOS-Verlag, Baden-Baden.Google Scholar
  56. Schade, W., and M. Krail (2006), Modeling and Calibration of Large Scale System Dynamics Models: The Case of the ASTRA Model.Google Scholar
  57. Schade, W., E. Jochem, T. Barker, G. Catenazzi, W. Eichhammer, T. Fleiter, A. Held, N. Helfrich, M. Jakob, P. Criqui, S. Mima, L. Quandt, A. Peters, M. Ragwitz, U. Reiter, F. Reitze, M. Schelhaas, S. Scrieciu, and H. Turton (2009), “ADAM — 2 degree scenario for Europe — policies and impacts. Deliverable M1.3 of ADAM (Adaptation and Mitigation Strategies: Supporting European Climate Policy)”, Project funded by the European Commission 6th RDT Programme. Karlsruhe, Germany.Google Scholar
  58. Seebregts, A. J., G. A. Goldstein, and K. E. Smekens (2002), “Energy/environmental modeling with the MARKAL family of models”, in Operations Research Proceedings 2001, Chamoni, R., Leisten, A., Martin, J., Minneman, Stadtler, H., eds., pp. 75–82, Duisburg, Germany.CrossRefGoogle Scholar
  59. Sensfuss, F. (2008), “Assessment of the Impact of Renewable Electricity Generation on the German Electricity Sector — An Agent-Based Simulation Approach”, Doctoral Thesis, University of Karlsruhe.Google Scholar
  60. Sensfuss, F., M. Ragwitz, and M. Genoese (2008), “The Merit-Order Effect: A Detailed Analysis of the Price Effect of Renewable Electricity Generation on Spot Market Prices in Germany”, Energy Policy, 36 (8), pp. 3086–3094.CrossRefGoogle Scholar
  61. Tinter, G. (1953), “The Definition of Econometrics”, Econometrica, 21(1), pp. 31–40.CrossRefGoogle Scholar
  62. UNEP (2011), “Recycling Rates of Metals — A Status Report”, 2nd Report of the Global Metal Flows working group of the International Panel of Sustainable Resource Management of UNEP.Google Scholar
  63. United Nations (1999), “Handbook of Input-Output Table Compilation and Analysis”, Studies in Methods, Series F No. 74, UN, New York.Google Scholar
  64. Ventosa, M., A. Baíllo, A. Ramos, and M. Rivier (2005), “Electricity Market Modeling Trends”, Energy Policy, 33(7), pp. 897–913.CrossRefGoogle Scholar
  65. Weidlich, A., and D. Veit (2008), “A Critical Survey of Agent-Based Wholesale Electricity Market Models”, Energy Economics, 30(4), pp. 1728–1759.CrossRefGoogle Scholar
  66. Wittmann, T. (2008), “Agent-Based Models of Energy Investment Decisions”, Doctoral Thesis, Technical University of Berlin, Physica-Verlag Heidelberg.Google Scholar
  67. Wooldridge, M., and N. R. Jennings (1995), “Intelligent Agents: Theory and Practice”, Knowledge Engineering Review, 10 (2), pp. 115–152.CrossRefGoogle Scholar
  68. Wooldridge, J. M. (2002), Econometric Analysis of Cross Section and Panel Data, Massachusetts Institute of Technology, The MIT Press, Cambridge, London.Google Scholar
  69. Wooldridge, M. (2009), An Introduction to MultiAgent Systems, John Wiley & Sons, Chichester.Google Scholar
  70. Worrel, E., S. Ramesohl, and G. Boyd, (2004), “Advances in Energy Forecasting Models Based on Engineering Economics”, Annu. Rev. Environ. Resour., 29, 345–81.CrossRefGoogle Scholar
  71. WWF (2009), „Modell Deutschland. Klimaschutz bis 2050: Vom Ziel her denken“, WWF Deutschland, Prognos AG, Öko-Institut e.V., Basel/Freiburg/ Berlin.Google Scholar
  72. Yao, J., S. S. Oren, and B. F. Hobbs (2010), “Hybrid Bertrand-Cournot Models of Electricity Markets with Multiple Strategic Subnetworks and Common Knowledge Constraints”, in Restructured Electric Power Systems, X.-P. Zhang, eds., John Wiley & Sons, Inc., Hoboken, NJ, USA.Google Scholar

Copyright information

© Swiss Society of Economics and Statistics 2012

Authors and Affiliations

  • Andrea Herbst
  • Felipe Toro
  • Felix Reitze
  • Eberhard Jochem

There are no affiliations available

Personalised recommendations