, Volume 19, Issue 12, pp 32–35 | Cite as

A process for direct chlorination of rare earth ores at high temperatures on a production scale

  • W. Brugger
  • E. Greinacher
Technical Article


A process for direct chlorination of rare earth ores without the necessary preparation of carbides or other intermediate compounds is described. Complete chlorination of all non-volatile components of the ores is obtained in a special, electrically heated furnace at temperatures between 1000 and 1200°C. The construction of the furnace permits quick replacement of some important components while the furnace is still hot. This reduces the unavoidable corrosion problem. The flowsheet of the process is presented. The process permits a high productive capacity with a small space, low investment, and low labor input. It is possible to process the most varied ores, such as Bastnasite, Monazite, Allanite, Cerite, Xenotime, Euxenite, Fergusonite, Gadolinite, etc., in the same installation. Reference is made to the treatment of off-gases. Fused anhydrous rare earth chlorides, without contaminants, are obtained as the final product, which is very suitable for the production of rare earth metals. This process can also be used to convert pure rare earth oxides to anhydrous chlorides.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. P. Aleksandrov: Russ. Pat. 57, 668, 1940.Google Scholar
  2. 2.
    F. R. Hartley: J. Appl Chem. (London), vol. 2, p. 24, 1952.CrossRefGoogle Scholar
  3. 3.
    B. Sarma and I. Gepta: J. Sci. Ind. Research (India), vol. 14B, p. 82, 1955.Google Scholar
  4. 4.
    A. B. McIntosh: Ind. Chemist, vol. 32, p. 195, 1956.Google Scholar
  5. 5.
    A. W. Henderson, S. L. May, and K. B. Higbie: Ind. Engng. Chem., vol. 50, p. 611, 1958.CrossRefGoogle Scholar
  6. 6.
    I. B. Zimmerman and I. C. Ingles: Analytical Chem., vol. 32, p. 241, 1960.CrossRefGoogle Scholar
  7. 7.
    Y. W. Gokhale, R. Manocha, and D. Sen, J. Sci. Ind. Research (India), vol. 19B, p. 422, 1960.Google Scholar
  8. 8.
    G. A. Meersou, A. N. Zelikman, L. V. Belyaevskaya, N. Y. Tseitima, and G. F. Kirillova: Sb. Nauchn. Tr., Inst. Tsvetn. Metal., vol. 33, p. 175, Russian.Google Scholar
  9. 9.
    O. M. Hilal and F. A. El Gohary: Ind. Engng. Chem., vol. 53, p. 99Z, 1961.CrossRefGoogle Scholar
  10. 10.
    N. Jordanov and Khr. Daiev: Zhurnal Analit. Khim., vol. 17, p. 431, 1962.Google Scholar
  11. 11.
    Isao Tanabe and coworkers: Denki Kagaku, vol. 29, p. 461, Japan.Google Scholar
  12. 12.
    Th. Goldschmidt A.-G.: German Patent 956,993.Google Scholar
  13. 13.
    Th. Goldschmidt A.-G.: German Patent 1,110,876; and U. S. Patents 2.755,325, 3,147,331.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 1967

Authors and Affiliations

  • W. Brugger
    • 1
  • E. Greinacher
    • 1
  1. 1.Th. Goldschmidt A.G. companyEssenWest Germany

Personalised recommendations