, Volume 8, Issue 2, pp 137–142 | Cite as

Comparison of Techniques in a Study of Zinc Self-Diffusion

  • F. E. JaumotJr.
  • R. L. Smith


Self-diffusion in zinc has been used as an instrument for comparison of the absorption and sectioning techniques as a means of studying diffusion. Single crystal as well as poly-crystal samples were used and the temperature range of diffusion extended from 200° to 415°C. For temperatures above 200°C, the data indicate that the results obtained from the absorption technique agree with those obtained from the sectioning technique. The effect on the values of the diffusion coefficient of electroplating vs evaporation as a means of applying the tracer was investigated and no significant difference observed. It was found that an excess or deficiency of tracer did not materially affect the results obtained from the sectioning technique, but invariably caused errors with the absorption technique.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. Shirn, E. S. Wadja, and H. D. Huntingdon: Acta Metallurgica (1951) 1, p. 513.CrossRefGoogle Scholar
  2. 2.
    P. H. Miller and F. L. Banks: Physical Review (1942) 61, p. 648.CrossRefGoogle Scholar
  3. 3.
    A. M. Sagrubskij: Bulletin Academy of Science, USSR (1937) p. 903. Physical Series.Google Scholar
  4. 4.
    A. C. McKay: Trans. Faraday Soc. (1918) 34, p. 845.CrossRefGoogle Scholar
  5. 5.
    L. Slifkin, D. Lazarus, and T. Tomizuka: Journal of Applied Physics (1952) 23, p. 1032.CrossRefGoogle Scholar
  6. 6.
    W. A. Johnson: Trans. AIME (1941) 143, p. 107; Metals Technology (January 1941).Google Scholar
  7. 7.
    R. E. Hoffman and D. Turnbull: Journal of Applied Physics (1951) 22, p. 634.CrossRefGoogle Scholar
  8. 8.
    A. D. Martin, R. D. Johnson, and F. Asaro: Journal of Applied Physics (1954) 25, p. 364.CrossRefGoogle Scholar
  9. 9.
    M. S. Maier and H. R. Nelson: Trans. AIME (1942) 147, p. 39; Metals Technology (January 1942).Google Scholar
  10. 10.
    C. L. Raynor, L. Thomassen, and L. J. Rouse: Trans. ASM (1942) 30, p. 313.Google Scholar
  11. 11.
    J. Steigman, W. Shockley, and Nix: Physical Review (1939) 25, p. 605. See for derivation of Eq. 2.Google Scholar
  12. 12.
    A. E. Berkowitz. F. E. Jaumot, Jr., and F. C. Nix: Physical Review (1954) 95, p. 1185.CrossRefGoogle Scholar
  13. 13.
    F. C. Nix and F. E. Jaumot, Jr.: Physical Review (1951) 82, p. 72.CrossRefGoogle Scholar
  14. 14.
    A. E. Berkowitz: Journal of Applied Physics (1955) 26, p. 403.CrossRefGoogle Scholar
  15. 15.
    J. E. Perkins and S. K. Hagrees: Physical Review (1953) 92, p. 686.CrossRefGoogle Scholar
  16. 16.
    T. Liu and H. G. Drickamer: Journal of Chemical Physics (1954) 22, No. 2, p. 312.CrossRefGoogle Scholar
  17. 17.
    R. E. Carter and F. O. Richardson: Trans. AIME (1954) 200, p. 1244; Journal of Metals (November 1954).Google Scholar
  18. 18.
    L. Himmel, R. F. Mehl, and C. E. Birchenall: Trans. AIME (1953); 197, p. 827; Journal of Metals (June 1953).Google Scholar
  19. 19.
    C. E. Birchenall: Private communication.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 1956

Authors and Affiliations

  • F. E. JaumotJr.
    • 1
  • R. L. Smith
    • 1
  1. 1.Solid State Physics Div.Franklin Institute Laboratories for Research and DevelopmentPhiladelphiaUSA

Personalised recommendations