, Volume 7, Issue 1, pp 88–99 | Cite as

Mobilities in Diffusion in Alpha Brass

  • G. T. Home
  • R. F. Mehl
Technical Note


Diffusion coefficients and mobilities were determined as functions of concentration in the a phase of the Cu-Zn system. Use was made of incremental diffusion couples to determine the Kirkendall effect at various concentrations. Darken’s analysis was used to calculate the individual diffusion coefficients and mobilities from these data. The general diffusion coefficient is a single-valued function of the concentration in this system to within the limits of accuracy of the experimental methods used. The form of the various functions (diffusion coefficients and mobilities) of concentration is the same in every case: it is essentially the same as the usual D vs c curve.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Darken: Discussion of ref. 4. Trans. AIME (1947) 171, p. 138.Google Scholar
  2. 2.
    E. O. Kirkendall, L. Thomassen, and C. Upthegrove: Trans. AIME (1939) 133, p. 186; Metals Technology (October 1938).Google Scholar
  3. 3.
    E. O. Kirkendall: Trans. AIME (1942) 147, p. 104; Metals Technology (February 1942).Google Scholar
  4. 4.
    A. D. Smigelskas and E. O. Kirkendall: Trans. AIME (1947) 171, p. 130.Google Scholar
  5. 5.
    L. C. C. da Silva and R. F. Mehl: Trans. AIME (1951) 191, p. 155; Journal of Metals (February 1951).Google Scholar
  6. 6.
    R. S. Barnes: Proceedings Physical Society (1952) B65, p. 512.CrossRefGoogle Scholar
  7. 7.
    R. W. Baluffi and B. H. Alexander: Trans. AIME (1952) 194, p. 1315; Journal of Metals (December 1952).Google Scholar
  8. 8.
    W. Seith and A. Kottman: Angewandte Chemie (1952) 64, p. 379.CrossRefGoogle Scholar
  9. 9.
    J. Bardeen and C. Herring: Most of the theories are discussed and summarized. Atom Movements. (1951) Cleveland. ASM.Google Scholar
  10. 10.
    L. S. Darken: Trans. AIME (1948) 175, p. 184; Metals Technology (January 1948).Google Scholar
  11. 11.
    C. Wells, W. Batz, and R. F. Mehl: Trans. AIME (1950) 188, p. 553; Journal of Metals (March 1950).Google Scholar
  12. 12.
    D. E. Thomas and C. E. Birchenall: Trans. AIME (1952) 194, p. 867; Journal of Metals (August 1952).Google Scholar
  13. 13.
    M. S. Maier and H. R. Nelson: Trans. AIME (1942) 147, p. 39.Google Scholar
  14. 14.
    F. N. Rhines and R. F. Mehl: Trans. AIME (1938) 128, p. 185; Metals Technology (January 1938).Google Scholar
  15. 15.
    A. W. Herbenar, C. A. Siebert, and O. S. Duffendack: Trans. AIME (1950) 188, p. 323; Journal of Metals (February 1950).Google Scholar
  16. 16.
    R. Hargreaves: Journal Institute of Metals (1939) 64, p. 115.Google Scholar
  17. 17.
    A. D. LeClaire: Philosophical Magazine (1951) 62, p. 673.CrossRefGoogle Scholar
  18. 18.
    W. Seith and W. Kraus: Ztsch. für Elektrochemie (1938) 44, p. 98.Google Scholar
  19. 19.
    O. Kubaschewski: Trans. Faraday Society (1950) 46, p. 713.CrossRefGoogle Scholar
  20. 20.
    A. D. LeClaire: Progress in Metal Physics (1949) I, IV. New York. Interscience Publishers.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 1955

Authors and Affiliations

  • G. T. Home
    • 1
  • R. F. Mehl
    • 1
  1. 1.Dept. of Metallurgical EngineeringCarnegie Institute of TechnologyPittsburghUSA

Personalised recommendations