Advertisement

Zur Theorie des Value at Risk-minimalen Hedges

  • Peter Albrecht
Hedge Ratio

Zusammenfassung

Der vorliegende Beitrag befasst sich mit der Bestimmung der optimalen Hedge Ratio auf der Basis von Future-Kontrakten unter Zugrundelegung der Forderung, dass der Value at Risk der Hedge-Position minimiert werden soll. Unter Verwendung von Ergebnissen im Kontext von Quantilableitungen gelingt hier zunächst die Bestimmung einer allgemeinen strukturellen Lösung. Unter Ausnutzung der Eigenschaften von elliptischen Verteilungen gelingt darüber hinaus eine explizite Bestimmung der optimalen Hedge Ratio und damit eine systematische Verallgemeinerung der in der Literatur entwickelten korrespondierenden Lösung für den Normalverteilungsfall.

Schlüsselwörter

Elliptische Verteilungen Hedge Ratio Lineare Vorhersage Quantilableitung 

Abstract

The present contribution studies the problem of determining the optimal hedge ratio in the case of minimizing the value at risk of the hedge position. Using results in connection with quantile derivatives we at first are able to characterize the general solution to the problem. Using properties of the family of elliptical distribution we then are able to develop an explicit solution to the problem which generalizes the solution for the case of a (bivariate) normal distribution known from the literature.

JEL-Classification

G11 G 32 

Keywords

Elliptical Distributions Hedge Ratio Linear Prediction Quantile Derivative 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albrecht, Peter/ Maurer, Raimond (2008), Investment- und Risikomanagement, 3. Aufl., Stuttgart.Google Scholar
  2. Bauer, Christian (2000), Value at Risk Using Hyperbolic Distributions, in: Journal of Economics and Business, Vol. 52, S. 455–467.CrossRefGoogle Scholar
  3. Bingham, Nicholas H./ Kiesel, Rüdiger (2001), Semi-parametric modelling in finance: theoretical foundations, in: Quantitative Finance, Vol. 1, S. 1–10.Google Scholar
  4. Chen, Shyang-Sheng/ Lee, Cheng-few/ Shrestha, Keshab (2003), Futures hedge ratios: a review, in: Quarterly Review of Economics and Finance, Vol. 43, S. 433–465.CrossRefGoogle Scholar
  5. Cont, Rama (2001), Empirical properties of asset returns: Stylized facts and statistical issues, in: Quantitative Finance, Vol. 1, S. 223–236.CrossRefGoogle Scholar
  6. Fang, Kai-Tai/ Kotz, Samuel/ Ng, Kai-Wang (1990), Symmetric Multivariate and Related Distributions, London, New York.CrossRefGoogle Scholar
  7. Hung, Jui-Cheng/ Chiu, Chien-Liang/ Lee, Ming-Chih (2006), Hedging with zero-value at risk hedge ratio, in: Applied Financial Economics, Vol. 16, S. 259–269.CrossRefGoogle Scholar
  8. Johnson, Leland L. (1960), The theory of hedging and speculation in commodity futures, in: Review of Economic Studies, Vol. 27, S. 139–151.CrossRefGoogle Scholar
  9. Johnson, Norman Lloyd/ Kotz, Samuel (1970), Continuous univariate distributions, Vol. 2, New York u.a.Google Scholar
  10. Jorion, Phillipe (2007), Value at Risk, the New Benchmark for Managing Financial Risk, 3. Aufl., New York u.a.Google Scholar
  11. Martin, Richard/ Wilde, Tom (2002), Unsystematic credit risk, in: RISK, S. 123–128.Google Scholar
  12. McNeil, Alexander J./ Frey, Rüdiger/ Embrechts, Paul (2005), Quantitative Risk Management, Princeton, Oxford.Google Scholar
  13. Gourieroux, Christian/ Laurent, Jean-Paul/ Scaillet, Olivier (2000), Sensitivity Analysis of Value at Risk, in: Journal of Empirical Finance, Vol. 7, S. 225–245.CrossRefGoogle Scholar
  14. Kelker, Douglas (1970), Distribution Theory of Spherical Distributions and a Location-Scale Parameter Generalization, in: Sankhya: The Indian Journal of Statistics, Vol. 32, S. 419–430.Google Scholar
  15. Rau-Bredow, Hans (2004), Value at Risk, Expected Shortfall, and Marginal Risk Contribution, in: Szegö, Giorgio (Hrsg.), Risk Measures for the 21st Century, Chichester, S. 61–68.Google Scholar
  16. Schmidt, Rafael (2002), Tail dependence for elliptically contoured distributions, in: Mathematical Methods of Operations Research, Vol. 55, S. 301–327.CrossRefGoogle Scholar

Copyright information

© Schmalenbach-Gesellschaft.eV. 2011

Authors and Affiliations

  1. 1.Lehrstuhl für Allgemeine Betriebswirtschaftslehre, Risikotheorie, Portfolio Management und VersicherungswirtschaftUniversität MannheimMannheimDeutschland

Personalised recommendations