Produktliniengestaltung mit Genetischen Algorithmen

  • Winfried J. Steiner
  • Harald Hruschka


Designing and pricing single products or product lines is one of the most important problem areas of a firm. In this contribution, a new conjoint-based optimal product line design model with special focus on profit maximizing firms is presented. The model allows the inclusion of consumers’ preferences, counterpart products of competitors as well as variable and fixed costs. Moreover, flexible probabilistic choice modeling is supported using the conditional multinomial logit model. A genetic algorithm is proposed for solving the product line design problem and, as a result of performance evaluation, is proved to be a promising solution technique. In particular, the performance of the genetic algorithm is compared with Green and Krieger’s well-known greedy heuristic which has received much application to realworld product line problems.


C61 M3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, Sönke (1977), A Mixed Integer Nonlinear Programming Procedure for Simultaneously Locating Multiple Products in an Attribute Space, in: Henn, R. et al. (Hrsg.), Operations Research Verfahren XXVI, S. 899–909.Google Scholar
  2. Albers, Sönke (1989), Gewinnorientierte Neuproduktpositionierung in einem Eigenschaftsraum, in: zfbf, 41. Jg., S. 186–209.Google Scholar
  3. Albers, Sönke/Brockhoff, Klaus (1979), A Comparison of Two Approaches to the Optimal Positioning of a New Product in an Attribute Space, in: Zeitschrift für Operations Research, Band 23, S. 127–142.Google Scholar
  4. Balakrishnan, P. V.(Sundar)/ Jacob, Varghese S. (1996), Genetic Algorithms for Product Design, in: Management Science, Vol. 42, S. 1105–1117.CrossRefGoogle Scholar
  5. Bauer, Hans H./ Herrmann, Andreas/ Mengen, Andreas (1994), Eine Methode zur gewinnmaximalen Produktgestaltung auf der Basis des Conjoint Measurement, in: Zeitschrift für Betriebswirtschaft, 64. Jg., S. 81–94.Google Scholar
  6. Brockhoff, Klaus (1999), Produktpolitik, 4. Auflage.Google Scholar
  7. Choi, S. Chan/ DeSarbo, Wayne S./ Harker, Patrick T. (1990), Product Positioning under Price Competition, in: Management Science, Vol. 36, S. 175–199.CrossRefGoogle Scholar
  8. Choi, S. Chan/ DeSarbo, Wayne S. (1993), Game Theoretic Derivations of Competitive Strategies in Conjoint Analysis, in: Marketing Letters, Vol. 4, S. 337–348.CrossRefGoogle Scholar
  9. Davidson, Hugh J. (1976), Why Most New Consumer Brands Fail, in: Harvard Business Review, Vol. 54, S. 117–122.Google Scholar
  10. DeBrentani, Ulrike (1989), Success and Failure in New Industrial Services, in: Journal of Product Innovation Management, Vol. 6, S. 239–258.CrossRefGoogle Scholar
  11. Dobson, Gregory/ Kalish, Shlomo (1988), Positioning and Pricing a Product Line, in: Marketing Science, Vol. 7, S. 107–125.CrossRefGoogle Scholar
  12. Dobson, Gregory/ Kalish, Shlomo (1993), Heuristics for Pricing and Positioning a Product-Line Using Conjoint and Cost Data, in: Management Science, Vol. 39, S. 160–175.CrossRefGoogle Scholar
  13. Gaul, Wolfgang/ Aust, Eberhard/ Baier, Daniel (1995), Gewinnorientierte Produktliniengestaltung unter Berücksichtigung des Kundennutzens, in: Zeitschrift für Betriebswirtschaft, Vol. 65, S. 835–855.Google Scholar
  14. Goldberg, David E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning.Google Scholar
  15. Green, Paul E./ Krieger, Abba M. (1985), Models and Heuristics for Product Line Selection, in: Marketing Science, Vol. 4, S. 1–19.CrossRefGoogle Scholar
  16. Green, Paul E./ Krieger, Abba M. (1987a), A Consumer-Based Approach to Designing Product Line Extensions, in: Journal of Product Innovation Management, Vol. 4, S. 21–32.CrossRefGoogle Scholar
  17. Green, Paul E./ Krieger, Abba M. (1987b), A Simple Heuristic for Selecting ‚Good ‘Products in Conjoint Analysis, in: Applications of Management Science, Vol. 5, S. 131–153.Google Scholar
  18. Green, Paul E./ Krieger, Abba M. (1989), Recent Contributions to Optimal Product Positioning and Buyer Segmentation, in: European Journal of Operational Research, Vol. 41, S. 127–141.CrossRefGoogle Scholar
  19. Green, Paul E./ Krieger, Abba M. (1992), An Application of a Product Positioning Model to Pharmaceutical Products, in: Marketing Science, Vol. 11, S. 117–132.CrossRefGoogle Scholar
  20. Green, Paul E./Srinivasan V. (1990), Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice, in: Journal of Marketing, Vol. 54, S. 3–19.CrossRefGoogle Scholar
  21. Gutsche, Jens (1995), Produktpräferenzanalyse: Ein modelltheoretisches und methodisches Konzept zur Marktsimulation mittels PräferenzerfassungsmodellenGoogle Scholar
  22. Heistermann, Jochen (1994), Genetische Algorithmen: Theorie und Praxis evolutionärer Optimierung.Google Scholar
  23. Holland, John H. (1975), Adaptation in Natural and Artificial Systems.Google Scholar
  24. Hruschka, Harald (1996), Marketing-Entscheidungen.Google Scholar
  25. Jungnickel, Dieter (1990), Graphen, Netzwerke und Algorithmen.Google Scholar
  26. Kohli, Rajeev/ Krishnamurti, Ramesh (1987), A Heuristic Approach to Product Design, in: Management Science, Vol. 33, S. 1523–1533.CrossRefGoogle Scholar
  27. Kohli, Rajeev/ Krishnamurti, Ramesh (1989), Optimal Product Design Using Conjoint Analysis: Computational Complexity and Algorithms, in: European Journal of Operational Research, Vol. 40, S. 186–195.CrossRefGoogle Scholar
  28. Kohli, Rajeev/ Sukumar, R. (1990), Heuristics for Product-Line Design Using Conjoint Analysis, in: Management Science, Vol. 36, S. 1464–1478.CrossRefGoogle Scholar
  29. Maidique, Modesto A./ Zirger, Billie Jo (1984), A Study of Success and Failure in Product Innovation: The Case of the U.S. Electronics Industry, in: IEEE Transactions on Engineering Management, EM-31, S. 193–203.CrossRefGoogle Scholar
  30. Maier, Gunther/Weiss, Peter (1990), Modelle diskreter Entscheidungen: Theorie und Anwendung in den Sozial- und Wirtschaftswissenschaften.Google Scholar
  31. Marks, Ulf G. (1994), Neuproduktpositionierung in Wettbewerbsmärkten.Google Scholar
  32. McBride, Richard D./ Zufryden, Fred S. (1988), An Integer Programming Approach to the Optimal Product Line Selection Problem, in: Marketing Science, Vol. 7, S. 126–140.CrossRefGoogle Scholar
  33. Michalewicz, Zbigniew (1996), Genetic Algorithms + Data Structures = Evolution Programs, 3. Auflage.Google Scholar
  34. Nair, Suresh K./ Thakur, Lakshman S./ Wen, Kuang-Wei (1995), Near Optimal Solutions for Product Line Design and Selection: Beam Search Heuristics, in: Management Science, Vol. 41, S. 767–785.CrossRefGoogle Scholar
  35. Schöneburg, Eberhard/Heinzmann, Frank/Feddersen, Sven (1994), Genetische Algorithmen und Evolutionsstrategien: Eine Einführung in Theorie und Praxis der simulierten Evolution.Google Scholar
  36. Shugan, Steven M./ Balachandran, V. (1977), A Mathematical Programming Model for Optimal Product Line Structuring, Working Paper Series 7734 (October), University of Rochester Graduate School of Business, NY.Google Scholar
  37. Steiner, Winfried J. (1999), Optimale Neuproduktplanung: Entscheidungsmodelle und wettbewerbsorientierte Ansätze.Google Scholar
  38. Steiner, Winfried J./ Hruschka, Harald (2000), Conjointanalyse-basierte Produkt(linien)gestaltung unter Berücksichtigung von Konkurrenzreaktionen, in: OR Spektrum, Vol. 22, S. 71–95.CrossRefGoogle Scholar
  39. Wedel, Michel/Kamakura, Wagner A. (1998), Market Segmentation: Conceptual and Methodological Foundations.Google Scholar
  40. Zufryden, Fred S. (1977), A Conjoint-Measurement-Based Approach for Optimal New Product Design and Market Segmentation, in: Shocker, Allan D. (Hrsg.), Analytic Approaches to Product and Market Planning, S. 100–114.Google Scholar

Copyright information

© Schmalenbach-Gesellschaft.eV. 2002

Authors and Affiliations

  1. 1.Universität RegensburgRegensburgGermany
  2. 2.Universität RegensburgRegensburgDeutschland

Personalised recommendations