Journal of Materials Science

, Volume 25, Issue 2, pp 1132–1136 | Cite as

Synthesis and characteristics of zirconia fine powders from organic zirconium complexes

  • Boro Duričić
  • Drago Kolar
  • Miloš Komac


An organic zirconium complex was synthesized from concentrated ZrOCl2 solution and an organic complex which was a mixture of β-glycosyl urea (Schiff’s base) and urea. Homogeneous hydrolysis and controlled polymerization of zirconium-tetramers was accomplished by heating the solution to boiling. Fine ZrO2 and yttrium- or magnesium-stabilized ZrO2 powders were prepared by dehydration and pyrolisis in air. The powders obtained are composed of 0.1 µm particles and were sintered to an above 98% density ceramic with 0.25–0.30 µm grain size.


Conium Complex Attrition Milling Interparticle Bond Hard Agglomerate Excess Urea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. F. LANGE, J. Mater. Sci. 17 (1982) 240.CrossRefGoogle Scholar
  2. 2.
    K. TSUKUMA, Y. KUBOTA and T. TSUKIDATE, in “Advances in Ceramics” Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen et al. (Americal Ceramics Society, Columbus, Ohio, 1983) p. 382.Google Scholar
  3. 3.
    W. H. RHODES, J. Amer. Ceram. Soc. 64 (1981) 19.CrossRefGoogle Scholar
  4. 4.
    B. FEGLEY, Jr., P. WHITE and H. K. BOWEN, Ceram. Bull. 64 (1985) 1115.Google Scholar
  5. 5.
    M. A. C. G. VAN DE GRAAF and A. J. BURG-GRAAF, in “Advances in Ceramics” Vol. 12, “Science and Technology of Zirconia II”, edited by N. Claussen et al. (American Ceramics Society, Columbus, Ohio, 1983) p. 744.Google Scholar
  6. 6.
    K. HABERKO, Ceram. Int. 5 (1979) 148.CrossRefGoogle Scholar
  7. 7.
    E. MATIJEVIC, Prog. Colloid. Polymer. Sci. 61 (1976) 24.CrossRefGoogle Scholar
  8. 8.
    H. P. KLUG and L. E. ALEXANDER, “X-Ray Diffraction Procedures” (Wiley, New York, 1954) Ch. 9.Google Scholar
  9. 9.
    B. H. H. WILLARD and N. K. TANG, J. Amer. Chem. Soc. 59 (1937) 1190.CrossRefGoogle Scholar
  10. 10.
    J. E. BLENDELL, H. K. BOWEN and R. L. COBLE, Ceram. Bull. 63 (1984) 797.Google Scholar
  11. 11.
    A. CLEARFIELD and E. J. MALKIEWICH, J. Inorg. Nucl. Chem. 25 (1963) 237.CrossRefGoogle Scholar
  12. 12.
    R. B. PENLAND, S. MIZUSHIMA, C. CURRAN and J. V. QUAGLIANO, J. Amer. Chem. Soc. 79 (1957) 1575.CrossRefGoogle Scholar
  13. 13.
    J. C. EVANS, J. Chem. Phys. 22 (1954) 1228.CrossRefGoogle Scholar
  14. 14.
    R. G. R. GIMBLET, A. A. RAHMAN and K. S. W. SING, J. Chem. Tech. Biotechnol. 30 (1980) 51.CrossRefGoogle Scholar
  15. 15.
    A. A. RAHMAN, Thermochim. Acta 85 (1985) 3.CrossRefGoogle Scholar
  16. 16.
    Y. MURASE and E. KATO, J. Cryst. Growth 50 (1980) 509.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • Boro Duričić
    • 1
  • Drago Kolar
    • 2
  • Miloš Komac
    • 2
  1. 1.EnergoinvestCentre for Research and Development MaterialsSarajevoYugoslavia
  2. 2.J. Stefan InstituteUniversity of LjubljanaLjubljanaYugoslavia

Personalised recommendations