Journal of Materials Science

, Volume 25, Issue 2, pp 801–804 | Cite as

Amorphous Al-Cr alloys by mechanical grinding of rapidly solidified crystalline powders

  • K. F. Kobayashi
  • N. Tachibana
  • P. H. Shingu


Mechanical grinding (MG) of rapidly solidified crystalline powders has been performed by the use of a conventional ball-mill. It produced amorphous AI-15 and 20at% Cr alloys. Starting powders for MG were prepared from the ribbons by the single roller method and the component of them was mainly icosahedral quasicrystal. This treatment made it possible to produce the amorphous phase by MG even in the alloy system where liquid quenching did not result in the formation of amorphous phase. The amorphous phase obtained in AI-20 at % Cr alloy was stable up to about 820 K at the continuous heating rate of 0.33 K sec−1 and the activation energy for crystallization was about 240 kJ mol−1.


Amorphous Phase Differential Scanning Calorimetry Curve Crystalline Powder Icosahedral Quasicrystal Mechanical Grind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. C. KOCH, O. B. CAVIN, C. G. McKAMEY and J. O. SCARBROUGH, Appl. Phys. Lett. 43 (1983) 1017.CrossRefGoogle Scholar
  2. 2.
    R. B. SCHWARZ, R. R. PETRICH and C. K. SAW, J. Non-Crystalline Solids 76 (1985) 281.CrossRefGoogle Scholar
  3. 3.
    E. HELLSTERN and L. SCHULTZ, Appl. Phys. Lett. 48 (1986) 124.CrossRefGoogle Scholar
  4. 4.
    R. B. SCHWARZ and C. C. KOCH, ibid. 49 (1986) 146.CrossRefGoogle Scholar
  5. 5.
    A. INOUE, H. M. KIMURA, K. MATSUKI and T. MASUMOTO, J. Mater. Sci. Lett. 6 (1987) 979.CrossRefGoogle Scholar
  6. 6.
    L. SCHULTZ, Mater. Sci. Eng. 97 (1988) 15.CrossRefGoogle Scholar
  7. 7.
    A. Ye. YERMAKOV, Ye. Ye. YURCHIKOV and V. A. BARINOV, Fiz. Met. Metalloved. 52 (1981) 1184.Google Scholar
  8. 8.
    C. C. KOCH and M. S. KIM, J. Physique 46 (1985) C8–573.CrossRefGoogle Scholar
  9. 9.
    R. M. DAVIS and C. C. KOCH, Scripta Metall. 21 (1987) 305.CrossRefGoogle Scholar
  10. 10.
    P. Y. LEE and C. C. KOCH, Appl. Phys. Lett. 50 (1987) 1578.CrossRefGoogle Scholar
  11. 11.
    P. Y. LEE and C. C. KOCH, J. Mater. Sci. 23 (1988) 2937.Google Scholar
  12. 12.
    R. B. SCHWARZ, Mater. Sci. Eng. 97 (1988) 71.CrossRefGoogle Scholar
  13. 13.
    T. B. MASSALSKI, J. L. MURRY, L. H. BENNETT and H. BAKER, “Binary Alloy Phase Diagrams”, Vol. 1 (American Society for Metals, Metals Park, Ohio, 1986) p. 104.Google Scholar
  14. 14.
    A. INOUE, H. KIMURA and T. MASUMOTO, J. Mater. Sci. 22 (1987) 1758.CrossRefGoogle Scholar
  15. 15.
    S. R. NISHITANI, Y. IWASA, K. N. ISHIHARA and P. H. SHINGU, Trans. Jpn Inst. Met. 28 (1987) 679.CrossRefGoogle Scholar
  16. 16.
    K. F. KOBAYASHI, N. TACHIBANA and P. H. SHINGU, J. Mater. Sci. 24 (1989) 2437.CrossRefGoogle Scholar
  17. 17.
    H. E. KISSINGER, Anal. Chem. 29 (1957) 1702.CrossRefGoogle Scholar

Copyright information

© Chapman and Hall Ltd. 1990

Authors and Affiliations

  • K. F. Kobayashi
    • 1
  • N. Tachibana
    • 2
  • P. H. Shingu
    • 2
  1. 1.Department of Welding and Production EngineeringOsaka UniversitySuita, OsakaJapan
  2. 2.Department of Metal Science and TechnologyKyoto UniversitySakyo-ku, KyotoJapan

Personalised recommendations