Advertisement

A computing system for the clinical and experimental investigation of cerebrovascular reactivity

  • Peter Smielewski
  • Marek Czosnyka
  • Wojciech Zabolotny
  • Peter Kirkpatrick
  • Hugh Richards
  • John D. Pickard
Article
  • 18 Downloads

Abstract

We present a computing system for the recording and on-line analysis of analogue signals derived from bedside cerebrovascular monitors in different pathophysiological conditions. These include arterial blood pressure and oxygen saturation, end-tidal carbon dioxide concentration, cerebral blood flow velocities using transcranial Doppler ultrasonography, and concentration changes in cerebral oxy- and deoxyhaemoglobin from near infrared spectroscopy. Configuration and analysis adopts arithmetic expressions of different signal processing functions, various statistical properties for each signal, frequency spectrum analysis using fast Fourier transformation, and correlation/cross-correlation. The software offers off-line analysis of non-invasive tests of cerebrovascular reactivity. Several examples of clinical assessment of cerebrovascular reactivity are presented, including cerebral haemodynamic stress tests which employ carbon dioxide, acetazolamide, the breath holding test, leg cuff inflation and deflation, and transient carotid artery compression. Application within the experimental setting with induced haemorrhagic hypotension can also be used.

Key words

autoregulation cerebrovascular reactivity computer-aided diagnosis multimodality monitoring waveform analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lassen NA. Cerebral blood flow and oxygen consumption in man. Physiol Rev 1959; 39: 183–238PubMedGoogle Scholar
  2. 2.
    Cold GE, Jensen FT. Cerebral autoregulation in unconscious patients with brain injury. Acta Anaesthesiol Scand 1978; 22: 270–280CrossRefPubMedGoogle Scholar
  3. 3.
    Czosnyka M, Kirkpatrick P, Guazzo E, et al. Nagai H, Kamiya K, Ishii S, eds. Assessment of the autoregulatory reserve using continuous CPP and TCD blood flow velocity measurement in head injury. Intracranial Pressure IX. Springer Verlag, 1994; pp. 593–594Google Scholar
  4. 4.
    Dernbach PD, Little JR, Jones SC, Ebrahim ZY. Altered cerebral autoregulation and CO2 reactivity after aneurysmal subarachnoid hemorrhage. Neurosurgery 1988; 22: 822–826CrossRefPubMedGoogle Scholar
  5. 5.
    Enevoldsen EM, Jensen FT. Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 1978; 48: 689–703CrossRefPubMedGoogle Scholar
  6. 6.
    Pickard JD, Mathieson JD, Patterson J, Wyper D. Prediction of late ischaemic complications after cerebral aneurysm surgery by the intraoperative meassurement of cerebral blood flow. J Neurosurg 1980; 53: 305–308CrossRefPubMedGoogle Scholar
  7. 7.
    Aaslid R, Lindegaard KF, Sorteberg W, Nornes H. Cerebral autoregulation dynamics in humans. Stroke 1989; 20: 45–52CrossRefPubMedGoogle Scholar
  8. 8.
    Pickard JD, Boisvert DPJ, Graham DI, Fitch W. Late effects of subarachnoid haemorrhage on the response of primate cerebral circulation to drug induced changes in arterial blood pressure. J Neurol Neurosurg Psychiatry 1979; 42: 899–903CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bishop CCR, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: A validation study. Stroke 1986; 17: 913–915CrossRefPubMedGoogle Scholar
  10. 10.
    Ringelstein EB, Sievers C, Ecker S, Schneider PA, Otis SM. Noninvasive assessment of CO2-induced cerebral vasomotor response in normal individuals and patients with internal carotid artery occlusions. Stroke 1988; 19: 963–969.CrossRefPubMedGoogle Scholar
  11. 11.
    Sullivan HG, Kingsbury TB, Morgan ME, Jeffcoat RD, Allison JD, Goode JJ, McDonnell DE. The rCBF response to Diamox in normal subjects and cerebrovascular disease patients. J Neurosurg 1987; 67: 525–534CrossRefPubMedGoogle Scholar
  12. 12.
    Bouma GJ, Muizelaar JP. Cerebral blood flow, cerebral blood volume, and cerebrovascular reactivity after severe head injury. J Neurotrauma 1992; 9(1): S333–S348PubMedGoogle Scholar
  13. 13.
    Klingelhofer J, Sander D. Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracranial hemorrhages. Stroke 1992; 23: 962–966CrossRefPubMedGoogle Scholar
  14. 14.
    Widder B, Kleiser B, Krapf H. Course of cerebrovascular reactivity in patients with carotid artery occlusions. Stroke 1994; 25: 1963–1967CrossRefPubMedGoogle Scholar
  15. 15.
    Yonas H, Smith HA, Durnham SR, Pentheny SL, Johnson DW. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg 1993; 79: 483–489CrossRefPubMedGoogle Scholar
  16. 16.
    Aaslid R, Markwalder TM, Nornes H. Non-invasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57: 769–774CrossRefPubMedGoogle Scholar
  17. 17.
    Elwell CE, Owen-Reece H, Cope M, Wyatt JS, Edwards AD, Delpy DT, Reynolds EO. Measurement of adult cerebral haemodynamics using near infrared spectroscopy. Acta Neurochirurgica — Supplementum 1993; 59: 74–80PubMedGoogle Scholar
  18. 18.
    Smielewski P, Czosnyka M, Iyer V, Piechnik S, Whitehouse H, Pickard JD. Computerised transient hyperaemic response test — a method for the assessment of cerebral autoregulation. Ultrasound in Med & Biol 1995; 21: 599–611CrossRefGoogle Scholar
  19. 19.
    Zabolotny W, Czosnyka M, Smielewski P. Software for intracranial pressure recording and waveform analysis. In: Nagai H, Kamiya K, Ishii S, eds. Intracranial Pressure IX. Tokyo: Springer-Verlag, 1994; 439–440Google Scholar
  20. 20.
    Czosnyka M, Batorski L, Laniewski P, Maksymowicz W, Koszewski W, Zaworski W. A computer system for identification of the cerebrospinal compensatory model. Acta Neurochir 1990; 105: 112–116CrossRefPubMedGoogle Scholar
  21. 21.
    Gaab M, Ottens M, Busche F. Routine computerised neuromonitor. Miller JD, Teasdale GM, Rowan JO, Galbraith SL, Mendelow AD, eds. Intracranial Pressure VI. Berlin Heidelberg New York Tokyo: Springer-Verlag, 1986; 240–247CrossRefGoogle Scholar
  22. 22.
    Friden H, Ekstedt J. Instrumentation for cerebrospinal fluid hydrodynamic studies in man. Med Biol Eng Comput 1982; 20: 167–180CrossRefPubMedGoogle Scholar
  23. 23.
    Patel MC, Taylor Mg, Kontis S, Padayachee TS, Gosling RG. An online technique for estimating cerebral carbon dioxide reactivity. J Biomed Eng 1990; 12: 316–318CrossRefPubMedGoogle Scholar
  24. 24.
    Smielewski P, Kirkpatrick PJ, Minhas P, Pickard JD, Czosnyka M. Can cerebrovascular reactivity be measured with near-infrared spectroscopy? Stroke 1995; 26: 2285–2292CrossRefPubMedGoogle Scholar
  25. 25.
    Czosnyka M, Whitehouse H, Smielewski P, Kirkpatrick P, Guazzo EP, Pickard JD. Computer supported multimodal bedside monitoring for neuro intensive care. Int J Clin Monit Comput 1994; 11: 223–232CrossRefPubMedGoogle Scholar
  26. 26.
    Richards HK, Czosnyka M, Kirkpatrick PJ, Pickard JD. Estimation of laser-Doppler flux biological zero using basilar artery flow velocity in the rabbit. American Journal of Physiology 1995; 268: H213–H217PubMedGoogle Scholar
  27. 27.
    Elwell CE, Cope M, Edwards AD, Wyatt JS, Delpy DT, Reynolds EO. Quantification of adult cerebral hemodynamics by near-infrared spectroscopy. Journal of Applied Physiology 1994; 77: 2753–2760PubMedGoogle Scholar
  28. 28.
    Schaubauer AMA, Rooke T. Cutaneous laser Doppler flowmetry: applications and findings. Mayo Clin Proc 1994; 69: 564–574CrossRefGoogle Scholar
  29. 29.
    Boehmer RD. Continuous, real-time, noninvasive monitor of blood pressure: Penaz methodology applied to the finger. J Clin Monit 1987; 3: 282–287PubMedGoogle Scholar
  30. 30.
    Czosnyka M. Determination of periodic or quasi-periodic signal parameters via interpolation of DFT. In: Luque A, Figueiras VAR, Cappellini V eds. Digital signal processing. North Holland: Elsevier Science Publishers BV, 1985; pp 5–9Google Scholar
  31. 31.
    Giller CA. A bedside test for cerebral autoregulation using transcranial Doppler ultrasound. Acta Neurochir 1991; 108: 7–14CrossRefPubMedGoogle Scholar
  32. 32.
    Smielewski P, Czosnyka M, Pickard JD, Kirkpatrick P. Clinical evaluation of Near-infrared spectroscopy for testing cerebrovascular reactivity in patients with carotid artery disease. Stroke 1996; 28: 331–338CrossRefGoogle Scholar
  33. 33.
    Smielewski P, Czosnyka M, Kirkpatrick P, McEvoy H, Rutkowska H, Pickard JD. Assessment of cerebral autoregulation using carotid artery compression. Stroke 1996; 27: 2197–2203CrossRefPubMedGoogle Scholar
  34. 34.
    Szewczykowski J, Korsak-Sliwka J, Kunicki A. Computer-assisted determination of optimum ICP levels. In: Beks JWF, Bosch DA, Brock M, eds. Intracranial Pressure III. Berlin Heidelberg New York: Springer-Verlag, 1976; 295–302CrossRefGoogle Scholar
  35. 35.
    Castel JP, Cohadon F. The pattern of cerebral pulse: automatic analysis. In: Beks JWF, Bosch DA, Brock M, eds. Intracranial Pressure III. Berlin Heidelberg New York: Springer-Verlag, 1976; 303–307CrossRefGoogle Scholar
  36. 36.
    Czosnyka M, Price DJ, Williamson M. Monitoring of cerebrospinal dynamics using continuous analysis of intracranial pressure and cerebral perfusion pressure in head injury. Acta Neurochirurgica 1994; 126: 113–119CrossRefPubMedGoogle Scholar
  37. 37.
    Diehl RR, Linden D, Lucke D, Berlit P. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke 1995; 26: 1801–1804CrossRefPubMedGoogle Scholar
  38. 38.
    Kirkpatrick PJ, Czosnyka M, Pickard JD. Multimodal monitoring in neurointensive care. J Neurol Neurosurg Psychiatry 1996; 60: 131–139CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Markus HS, Harrison MJG. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatatory stimulus. Stroke 1992; 23: 668–673CrossRefPubMedGoogle Scholar
  40. 40.
    Ratnatunga C, Adiseshiah M. Increase in Middle cerebral artery velocity on breath holding: a simplified test of cerebral perfusion reserve. Eur J Vasc Surg 1990; 4: 519–523CrossRefPubMedGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers 1997

Authors and Affiliations

  • Peter Smielewski
    • 1
  • Marek Czosnyka
    • 1
  • Wojciech Zabolotny
    • 1
  • Peter Kirkpatrick
    • 1
  • Hugh Richards
    • 1
  • John D. Pickard
    • 1
  1. 1.MRC Cambridge Centre for Brain Repair and Academic Neurosurgical Unit, Addenbrooke’s HospitalUniversity of CambridgeCambridgeUK

Personalised recommendations