Skip to main content
Log in

Potential of Rhizobacteria for Promoting Sorghum Growth and Suppressing Striga hermonthica Development

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The objective of this study was to screen the potential of four plant growth promoting rhizobacteria (PGPR) for growth promotion in sorghum (Sorghum bicolor) and suppression of Striga hermonthica development. Bacillus subtilis Bsn5, B. subtilis GBO3, B. amyloliquefaciens FZB42 and Burkholderia phytofirmans PsJN were evaluated under controlled conditions in growth chambers. After 28 days of growth, the effect of selected PGPR on sorghum plant height, leaf chlorophyll (SPAD) value, biomass dry matter (DM), number of germinated and attached Striga plants and number of Striga plants that developed tubercles was analyzed. Inoculated Striga-free sorghum plants were significantly taller, with higher leaf chlorophyll SPAD values and higher dry matter than uninoculated Striga-free plants. However, there were no differences in sorghum height, SPAD value and DM between inoculated and uninoculated Striga-infected sorghum plants. In the absence of PGPR inoculation, differences in DM were observed between Striga-free and Striga-infected sorghum. Compared to the untreated control, Striga seed germination was lower in the sorghum plants treated with B. subtilis GBO3 and B. amyloliquefaciens FZB42. Of the germinated Striga seeds, the percentage that attached to the sorghum plant was lowest (23%) in the B. subtilis GBO3 treatment. The percentage of dead Striga tubercles in the PGPR treatments ranged between 35 and 59%, compared to 3% in the untreated control. This study identified B. subtilis GBO3, B. amyloliquefaciens FZB42 and Burkholderia phytofirmans PsJN with promising potential to promote sorghum growth and suppress Striga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adesemoye A, Torbert H & Kloepper J, 2008. Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol 54, 876–886.

    Article  CAS  PubMed  Google Scholar 

  • Ait Barka E, Sabine GS, Nowak J, Jean-Claude A & Belarbi A, 2002. Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24, 135–142.

    Article  Google Scholar 

  • Amusan IO, Rich PJ, Menkir A, Housley T & Ejeta G, 2008. Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol 178, 157–166.

    Article  PubMed  Google Scholar 

  • Amusan IO, Rich PJ, Housley T & Ejeta G, 2011. An in vitro method for identifying post attachment Striga resistance in maize and sorghum. Agron J 103, 1472–1478.

    Article  Google Scholar 

  • Arnaud MC & Véronési C & Thalouarn P, 1999. Physiology and histology of resistance to Striga hermonthica in Sorghum bicolor var. Framida. Aust J Plant Physiol 26, 63–70.

    Article  Google Scholar 

  • Babalola OO, 2010. Beneficial bacteria of agricultural importance. Biotechnol Lett 32, 1559–1570.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Zhu Y, Wang P, Zhu L, Zheng J, Li R & Sun M, 2011.Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora. J Bacteriol 193, 2070–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • FAO, 2012 statistical databases. http://faostat.fao.org. (Last accessed 20 April 2014).

  • Frommel MI, Nowak J & Lazarovits G, 1991. Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96, 928–936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Can J Microbiol 41, 109–117.

    Article  CAS  Google Scholar 

  • Goldwasser Y, Hershenhorn J, Plakhine D, Kleifeld Y & Rubin B, 1999. Biochemical factors involved in Vetch resistance to Orobanche aegyptiaca. Physiol Mol Plant Pathol 54, 87–96.

    Article  CAS  Google Scholar 

  • Graves JD, Press MC & Stewart GR, 1989. A carbon balance model of sorghum-Striga host-parasite association. Plant Cell Environ 12, 101–107.

    Article  Google Scholar 

  • Grosch R, Junge H, Krebs B & Bochow H, 1999. Use ofBacillus subtilis as a biocontrol agent. III. Influence of Bacillus subtilis on fungal root diseases and on yield in soilless culture. J Plant Dis Protect 106, 568–580.

    Google Scholar 

  • Guo C, Cui W, Feng X, Zhao J & Lu G, 2011. Sorghum insect problems and management. J Integr Plant Biol 53, 178–192.

    Article  PubMed  Google Scholar 

  • Haussmann BIG, Hess DE, Reddy BVS, Mukuru SZ, Kayentao M, Welz HG & Geiger HH, 2000. Diallel studies on Striga resistance in sorghum. In: Haussmann, BIG, Koyama, ML, Grivet, L, Rattunde, HF, Hess, DE (Eds.) 2000: Proceedings of a Workshop on Breeding for Striga Resistance in Cereals. IITA, Ibadan, Nigeria, 18–20 August 1999. Margraf, Weikersheim, Germany. 29–37.

    Google Scholar 

  • Idris HA, Labuschagne N & Korsten L, 2008. Suppression of Pythium ultimum root rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa. Biol Control 45, 72–84.

    Article  Google Scholar 

  • Jamil M, van Mourik TA, Charnikhova T & Bouwmeester HJ, 2013. Effect of diammonium phosphate on strigolactone production and Striga hermonthica infection in three sorghum cultivars. Weed Res 53, 121–130.

    Article  CAS  Google Scholar 

  • Kim S, Lowman S, Hou G, Nowak J, Flinn B & Mei C, 2012. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Biofuels 5, 1–10.

    Article  Google Scholar 

  • Lazarovits G & Nowak J, 1997. Rhizobacteria for improvement of plant growth and establishment. HortScience 32, 188–192.

    Google Scholar 

  • Pedas P, Hebbern CA, Schjoerring JK, Holm PE & Husted S, 2005. Differential capacity for high-affinity manganese uptake contributes to differences between barley genotypes in tolerance to low manganese availability. Plant Physiol 139, 1411–1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Press MC & Stewart GR, 1987. Growth and photosynthesis in Sorghum bicolor infected with Striga hermonthica. Ann Bot 60, 657–662.

    Google Scholar 

  • Runo S, Macharia S, Alakonya A, Machuka J, Sinha N & Scholes J, 2012. Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions. Plant Methods 8, 1–11.

    Article  Google Scholar 

  • Sauerborn J, 1991. The economic importance of the phytopa-rasits Orobanche and Striga. In: Ransom, JK, Musselman, LJ, Worsham, D and Parker, C (Eds.) 1991: Proceedings of the 5th International Symposium on Parasitic Weeds. CIMMYT, Nairobi, Kenya. 137–143.

    Google Scholar 

  • Sauerborn J & Müller-Stöver D, 2009. Application of natural antagonists including arthropods to resist weedy Striga (Orobanchaceae) in tropical agroecosystems. In: Muniappan, R, Reddy, GVP, Raman, A (Eds.) 2009: Biological Control of Tropical Weeds using Arthropods. Cambridge University Press, Cambridge, UK. 423–433.

    Chapter  Google Scholar 

  • Scholes JD & Press MC, 2008. Striga infestation of cereal crops — an unsolvedproblem in resource limited agriculture. Curr Opin Plant Biol 11, 180–186.

    Article  PubMed  Google Scholar 

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Barka EA, Salles JF & van Elsas JD, 2005. Burkholderia phytofirmans spp. Nov., a novel plant-associated bacterium with plant-beneficial properties. Int J Syst Evol Micr 55, 1187–1192.

    Article  CAS  Google Scholar 

  • Těšitel J, Plavcova L & Cameron D, 2010. Heterotrophic carbon gain by the root hemiparasites, Rhinanthus minor and Euphrasia rostkoviana (Orobanchaceae). Planta 231, 1137–1144.

    Article  PubMed  Google Scholar 

  • Watson AK, 2013. Biocontrol. In: Joel, DM., Gressel, J., Muselman, LJ. (Eds.) 2013: Parasitic Orobancheceae: Parasitic Mechanisms and Control Strategies. Springer-Verlag Berlin Heidelberg. 469–497.

    Google Scholar 

  • Zhang H, Kim M, Krishnamachari V, Payton P, Sun Y, Grimson M & Melo IS, 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226, 839–851.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S & Paré PW, 2008. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56, 264–273.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenard Gichana Mounde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mounde, L.G., Boh, M.Y., Cotter, M. et al. Potential of Rhizobacteria for Promoting Sorghum Growth and Suppressing Striga hermonthica Development. J Plant Dis Prot 122, 100–106 (2015). https://doi.org/10.1007/BF03356537

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356537

Key words

Navigation