Journal of Plant Diseases and Protection

, Volume 122, Issue 1, pp 28–35 | Cite as

Effects of Climate Change on Pest-Parasitoid Dynamics: Development of a Simulation Model and First Results

  • Konstanze Gebauer
  • Lia Hemerik
  • Rainer Meyhöfer


The influence of predicted climatic change on agricultural pest and beneficial insect species is of high importance for growers since increasing temperatures may have a direct impact on the developmental rates of insect populations. These parameters are species-specific and result in variable reactions to climate change, potentially disrupting the synchrony of pest-parasitoid dynamics. This study investigated the effect of increasing temperatures caused by climate change on the population dynamics of the mealy cabbage aphid Brevicoryne brassicae, a worldwide occurring pest species in cruciferous crops, and the endoparasitoid Diaeretiella rapae. For three vegetable growing regions in lower Saxony, the population development of both species was simulated for (1) the near future (2041–2050), (2) the far future (2090–2099) and (3) the reference time period (1991–2000), using an age structured simulation model including simulated temperature data. An earlier first occurrence of D. rapae in spring compared to B. brassicae was shown, however with no disruption of the synchrony between the two populations. Despite the earlier occurrence and increased population size of D. rapae in future periods, B. brassicae maximum population size also increased. Furthermore, an earlier occurrence of alate aphids during the season resulted from the model, indicating a potential need to adapt pest management.

Key words

Age-structured simulation model Brevicoryne brassicae Diaeretiella rapae pest-parasitoid interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar-Fenollosa E & Jacas JA, 2014. Can we forecast the effects of climate change on entomophagous biological control agents? Pest Manag Sci 70, 853–859.CrossRefPubMedGoogle Scholar
  2. Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM & Brown VK et al., 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8, 1–16.CrossRefGoogle Scholar
  3. Bernal J & González D, 1993. Temperature requirements of four parasites of the Russian wheat aphid Diuraphis noxia. Entomol Exp Appl 69, 173–182.CrossRefGoogle Scholar
  4. Bernal J & González D, 1995. Thermal requirements of Diaeretiella rapae (M’Intosh) on Russian wheat aphid (Diuraphis noxia Mordwilko, Hom., Aphididae) hosts. J Appl Entomol 119, 273–277.CrossRefGoogle Scholar
  5. Blande JD, Pickett J & Poppy GM, 2004. Attack rate and success of the parasitoid Diaeretiella rapae on specialist and generalist feeding aphids. J Chem Ecol 30, 1781–95.CrossRefPubMedGoogle Scholar
  6. Bonnemaison L, 1951. Contribution a l’ètude des facteurs provoquant l’apparition des formes ailées et sexudées chez les Aphidinae. L’Université de Paris.Google Scholar
  7. Campbell A, Frazer B & Gilbert N, 1974. Temperature requirements of some aphids and their parasites. J Appl Ecol 11, 431–438.CrossRefGoogle Scholar
  8. Cannon RJC, 1998. The implications of predicted climate change for insect pests in the UK with emphasis on non-indigenous. Glob Change Biol. 4, 785–796.CrossRefGoogle Scholar
  9. Cividanes FJ, 2003. Exigências térmicas de Brevicoryne brassicae e previsão de picos populacionais. Pesq agropec bras, Brasilia 38, 561–566.CrossRefGoogle Scholar
  10. Deloach CJ, 1974. Rate of increase of populations of cabbage, green peach, and turnip aphids at constant temperatures. Ann Entomol Soc Am 67, 332–340.CrossRefGoogle Scholar
  11. Doran PT & Kendall Zimmerman M, 2009. Examining the Scientific Consensus on Climate Change. Eos, Trans Am Geophys Union 90, 22–23.CrossRefGoogle Scholar
  12. Fleming R, 1996. A mechanistic perspective of possible influences of climate change on defoliating insects in North America’s boreal forests. Silva Fenn 30, 281–294.CrossRefGoogle Scholar
  13. Geiger F, Bianchi F & Wäckers F, 2005. Winter ecology of the cabbage aphid Brevicoryne brassicae (L.)(Homo., Aphididae) and its parasitoid Diaeretiella rapae (McIntosh)(Hym., Braconidae: Aphidiidae). J Appl Entomol 129, 563–566.CrossRefGoogle Scholar
  14. Godfray H, Hassell MP & Holt RD, 1994. The population dynamic consequences of phenological asynchrony between parasitoids and their hosts. J Anim Ecol 63, 1–10.CrossRefGoogle Scholar
  15. Goudriaan J & Van Roermund HJW, 1993. Modelling of ageing, development, delays and dispersion, On System Analysis and Simulation of Ecological Processes with Examples in CSMP and FORTRAN. Springer Netherlands.Google Scholar
  16. Hafez M, 1961. Seasonal fluctuations of population density of the cabbage aphid, Brevicoryne brassicae (L.), in the Netherlands, and the role of its parasite, Aphidius (Diaeretiella) rapae (Curtis). Eur J Plant Pathol 67, 445–548.Google Scholar
  17. Hance T, van Baaren J, Vernon P & Boivin G, 2007. Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52, 107–26.CrossRefPubMedGoogle Scholar
  18. Hayakawa DL, Grafius E & Stehr FW, 1990. Effects of temperature on longevity, reproduction, and development of the asparagus aphid (Homoptera: Aphididae) and the parasitoid, Diaeretiella rapae (Hymenoptera: Braconidae). Environ Entomol 19, 890–897.CrossRefGoogle Scholar
  19. Hemerik L & van Nes EH, 2008. A new release of INSIM: A temperature-dependent model for insect development. Proc Netherlands Entomol Soc Meet 19, 147–155.Google Scholar
  20. Hoover JK & Newman JA, 2004. Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Change Biol 10, 1197–1208.CrossRefGoogle Scholar
  21. Hughes RD, 1963. Population dynamics of the cabbage aphid, Brevicoryne brassicae (L.). J Anim Ecol 32, 393–424.CrossRefGoogle Scholar
  22. Kant R, Minor M, Trewick SA & Sandanayaka WRM, 2011. Host selection for self-superparasitism by Diaeretiella rapae (M’Intosh) (Hymenoptera: Aphidiidae). New Zeal Plant Prot 64, 37–43.Google Scholar
  23. Kant R, Minor MMA & Trewick SA, 2012. Reproductive strategies of Diaeretiella rapae (Hymenoptera: Aphidiinae) during fluctuating temperatures of spring season in New Zealand Biocontrol Sci Technol 22, 1–9.CrossRefGoogle Scholar
  24. Kant R, Sandanayaka WRM, He XZ & Wang Q, 2008. Effect of host age on searching and oviposition behaviour of Diaeretiella rapae (M’Intosh) (Hymenoptera: Aphidiidae). New Zeal Plant Prot 61, 355–361.Google Scholar
  25. Lamb K & Lowe A, 1967. Studies of the ecology of the cabbage aphid (Brevicoryne brassicae (L.)) on brassica field crops in Canterbury, New Zealand. New Zeal J Agric Res 10, 87–108.CrossRefGoogle Scholar
  26. Landesamt für Statistik Niedersachsen, 2014. Statistische Berichte Niedersachsen: Anbau von Gemüse und Erdbeeren zum Verkauf 2012. Stat Berichte Niedersachsen 64.Google Scholar
  27. Markkula M, 1953. Biologisch-ökologische Untersuchungen über die Kohlblattlaus, Brevicoryne brassicae (L.) (Hem., Aphididae). Ann Zool Soc Zool Fenn “Vanamo” 15, 1–113.Google Scholar
  28. Meehl GA & Tebaldi C, 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–7.CrossRefPubMedGoogle Scholar
  29. Mols PJM & Diederik D, 1995. INSIM a simulation environment for pest forecasting and simulation of pest-natural enemy interaction. Proc 4th Int Sym Comp Mod on Fruit Research. Acta Hort 416, 255–262.Google Scholar
  30. Nowierski R & Fitzgerald B, 2002. Supercooling capacity of Eurasian and North American populations of parasitoids of the Russian wheat aphid, Diuraphis noxia. BioControl 47, 279–292.CrossRefGoogle Scholar
  31. Olesen JE & Bindi M, 2002. Consequences of climate change for European agricultural productivity, land use and policy. Eur J Agron 16, 239–262.CrossRefGoogle Scholar
  32. Oreskes N, 2004. The Scientific Consensus on Climate Change. Science 306, 1686.CrossRefPubMedGoogle Scholar
  33. Rannow S, Loibl W, Greiving S, Gruehn D & Meyer BC, 2010. Potential impacts of climate change in Germany — Identifying regional priorities for adaptation activities in spatial planning. Landscape Urban Plan 98, 160–171.CrossRefGoogle Scholar
  34. Raworth DA, 1982. Population dynamics of the cabbage aphid Brevicoryne brassicae (L.) (Homoptera: Aphidae) in Vancouver British Columbia: A quantitative study and synthesis of ecological relationships. PhD thesis, University of British Columbia, Department of Plant Science, Institute of Animal Resource Ecology.Google Scholar
  35. Rehman A & Powell W, 2010. Host selection behaviour of aphid parasitoids (Aphidiidae: Hymenoptera). J Plant Breed Crop Sci 2, 299–311.Google Scholar
  36. Satar S, Kersting U & Ulusoy MR, 2005. Temperature dependent life history traits of Brevicoryne brassicae (L.) (Hom., Aphididae) on White Cabbage. Turkish J Agric For 29, 341–346.Google Scholar
  37. Stireman JO, Dyer LA, Janzen DH, Singer MS, Lill JT & Marquis RJ et al., 2005. Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci U S A 102, 17384–17387.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Tazerouni Z, Talebi A & Rakhshani E, 2011. The foraging behavior of Diaeretiella rapae (Hymenoptera: Braconidae) on Diuraphis noxia (Hemiptera: Aphididae). Arch Biol Sci 63, 225–234.CrossRefGoogle Scholar
  39. Thomson LJ, Macfadyen S & Hoffmann AA, 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 52, 296–306.CrossRefGoogle Scholar
  40. Van Emden HF, 1965. The effect of uncultivated land on the distribution of cabbage aphid (Brevicoryne brassicae) on an adjacent crop. J Appl Ecol 2, 171–196.CrossRefGoogle Scholar
  41. Whittaker JB & Tribe NP, 1996. An altitudinal transect as an indicator of response of a spittlebug (Auchenorrhyncha: Cercopidae) to climate change. Eur J Entomol 93, 319–324.Google Scholar
  42. Zhou X, Harrington R, Woiwod IP, Perry JN, Bale JS & Clark SJ, 1995. Effects of temperature on aphid phenology. Glob Change Biol 1, 303–313.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2015

Authors and Affiliations

  • Konstanze Gebauer
    • 1
  • Lia Hemerik
    • 2
  • Rainer Meyhöfer
    • 1
  1. 1.Institute for Horticultural Production Systems, Sect. PhytomedicineLeibniz Universität HannoverGermany
  2. 2.Biometris, Department for Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands

Personalised recommendations