Skip to main content
Log in

Quantification of Wheat spindle streak mosaic virus and Soil borne cereal mosaic virus in resistance testing of field samples of triticale using real-time RT-PCR

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Triticale, a cross between rye and wheat, is a crop important for animal feed and the production of biogas and ethanol. Soil-borne viruses found in wheat and rye, such as Furoviruses and Bymoviruses, also infect triticale. In order to evaluate resistance/tolerance it is necessary to accurately quantify virus content in the plants. We have developed RT-qPCR assays for the quantitative detection of the Bymovirus Wheat spindle streak mosaic Virus (WSSMV) and the Furovirus Soil-borne cereal mosaic virus (SBCMV) in field samples. Both a SYBR Green and a hydrolysis probe approach were tested. The RT-qPCR approach allows the quantitative evaluation and differentiation of triticale resistance to WSSMV and SBCMV. The reproducible large-scale analysis of field samples is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ, 1990. Basic local alignment search tool. J Mol Biol 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Bass C, Hendley R, Adams MJ, Hammond-Kosack KE & Kanyuka K, 2006. The Sbm1 locus conferring resistance to soil borne cereal mosaic virus maps to a gene-rich region on 5DL in wheat. Genome 49, 1140–1148.

    Article  CAS  PubMed  Google Scholar 

  • Bayles R, O’Sullivan D, Lea V, Freeman S, Budge G & Walsh K, 2007. PR418 Controlling Soil-borne cereal mosaic virus in the UK by developing resistant wheat cultivars. HGCA Project 2616. HGCA CropResearchNews, August 13, 2007. Issue 32.

    Google Scholar 

  • Bauer E, 2008. Abschluβbericht Universität Hohenheim, Landessaatzuchtanstalt. GFP-Forschungsauftrag 01HS067 (G102/04HS) Bodenbürtige Viren bei Roggen und Triticale — Entwicklung eines künstlichen Infektionstests und Untersuchungen zur Genetik der Resistenz.

    Google Scholar 

  • Bowers RM & Dhar AK, 2011. Effect of template on generating a standard curve for absolute quantification of an RNA virus by real-time reverse transcriptase-polymerase chain reaction. Mol Cell Probe 25, 60–64.

    Article  CAS  Google Scholar 

  • Bustin SA, Benes V, Nolan T & Pfaffl MW, 2005. Quantitative real-time RT-PCR — a perspective. J Mol Endocrinol 34, 597–601.

    Article  CAS  PubMed  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J & Wittwer CT, 2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55, 611–622.

    Article  CAS  PubMed  Google Scholar 

  • Carroll JE, Bergstrom GC & Gray SM, 2002. Assessing the resistance of winter wheat to wheat spindle streak mosaic bymovirus. Can J Plant Pathol 24, 465–470.

    Article  Google Scholar 

  • Diao A, Chen J, Gitton F, Antoniw JF, Mullins J, Hall AM & Adams MJ, 1999. Sequences of European wheat mosaic virus and oat golden stripe virus and genome analysis of the genus furovirus. Virology 261, 331–339.

    Article  CAS  PubMed  Google Scholar 

  • Distribution maps of plant diseases. Compiled by CABI in association with EPPO. http://www.cababstractsplus.org/dmpd Map No. 1108, Edition 1, Issued April 2011.

  • Drechsler N, Thieme T, Shepherd DN & Schubert J, 2014. Evaluation of the resistance of German cultivars of maize and sorghum to Maize streak virus. J Plant Dis Protect 121, 3–9.

    CAS  Google Scholar 

  • Hariri D, Courtillot M, Zaoui P & Lapierre H, 1987. Multiplication of Soil-borne wheat mosaic virus (SBWMV) in wheat roots infected by a soil carrying SBWMV and Wheat yellow mosaic virus (WYMV). Agronomie 7, 789–796.

    Article  Google Scholar 

  • Haufler KZ & Fulbright DW, 1986. Identification of Winter Wheat Cultivars and experimental lines resistant to Wheat spindle streak mosaic virus. Plant Dis 70, 31–33.

    Article  Google Scholar 

  • Hühnlein A, Drechsler N, Steinbach P, Thieme T & Schubert J, 2013. Comparison of three methods for the detection of Potato virus Y in seed potato certification. J Plant Dis Protect 120, 57–69.

    Google Scholar 

  • Huth W, 2002. Die bodenbürtigen Viren von Weizen und Roggen in Europa — ein zunehmendes aber durch ackerbauliche Maβnahmen und Anbau resistenter Sorten lösbares Problem (The soil-borne viruses of wheat and rye in European increasing problem which can be minimised by agricultural measures and growing of resistant cultivars). Gesunde Pflanz 54, 51–57.

    Article  Google Scholar 

  • Huth W, Götz R & Lesemann DE, 2007. Unterschiedliche Formen der Resistenz gegen bodenbürtige Viren des Weizens (Different types of resistance to soil-borne viruses of wheat). Gesunde Pflanz 59, 29–39.

    Article  Google Scholar 

  • Jezewska M & Trzmiel K, 2005. Occrrence of Soil-borne cereal mosaic virus in some regions of Western Poland. Prog Plant Protect 45, 205–209.

    Google Scholar 

  • Kastirr U & Widera A, 1988. Erste Ergebnisse zum Vorkommen der Vektoren des Gerstengelbmosaik-Virus (barley yellow mosaic virus) und Rübenwurzelbärtigkeits-Virus (beet necrotic yellow vein virus) in der DDR und deren Vermehrung an ihren Wirtspflanzen. Arch Phytopathol Pflanzenschutz (Berlin) 24, 93–101.

    Article  Google Scholar 

  • Kastirr U, Wortmann H & Ehrig F, 2006. Untersuchungen zum Infektionsverlauf und zur biologischen Differenzierung von bodenbürtigen Viren in Roggen, Triticale und Weizen. Gesunde Pflanz 58, 231–238.

    Article  Google Scholar 

  • Khan AA, Bergstrom GC, Nelson JC & Sorrells ME, 2000. Identification of RFLP markers for resistance to wheat spindle streak mosaic bymovirus. Genome 43, 477–482.

    Article  CAS  PubMed  Google Scholar 

  • King AMQ, Adams MJ, Carstens EB & Lefkowitz EJ, 2012. Virus Taxonomy. Classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier Academic Press.

    Google Scholar 

  • Kühne T, 2009. Soil-borne viruses affecting cereals-known for long but still a threat. Virus Res 141, 174–183.

    Article  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ & Higgins DG, 2007. ClustalW and ClustalX version. Bioinformatics 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Ledingham GA, 1939. Studies on Polymyxa graminis, n. gen., n. sp., a plasmodiophoraceous root parasite of wheat. Can J Res 17, 38–51.

    Google Scholar 

  • Miller NR, Bergstrom GC & Sorrells ME, 1992. Effect of wheat spindle streak mosaic virus on yield of winter wheat in New York. Phytopathology 82, 852–857.

    Article  Google Scholar 

  • Ratti C, Budge G, Ward L, Clover G, Rubies-Autonell C & Henry C, 2004. Detection and relative quantitation of Soilborne cereal mosaic virus (SBCMV) and Polymyxa graminis in winter wheat using real-time PCR (TaqMan®). J. Virological Methods 122, 95–103.

    Article  CAS  Google Scholar 

  • Slykhuis JT, 1960. Evidence of soil-borne mosaic of wheat in Ontario. Can Plant Dis Survey 40, 43.

    Google Scholar 

  • Slykhuis JT, 1974. Difference of transmission and incubation temperatures for WSSMV. Phytopathology 64, 554–557.

    Article  Google Scholar 

  • Slykhuis JT & Burr DJS, 1978. Confirmation of P. graminis as a vector of WSSMV. Phytopathology 68, 639–643.

    Article  Google Scholar 

  • Slykhuis JT & Polak Z, 1971. Factors affecting manual transmission purification and particle lengths of wheat spindle streak mosaic virus. Phytopathology 61, 568–574.

    Article  Google Scholar 

  • Stahlberg A, Hakansson J, Xian X, Semb H & Kubista M, 2004. Properties of the Reverse Transcription reaction in mRNA quantification. Clin Chem 50, 509–515.

    Article  CAS  PubMed  Google Scholar 

  • Vaïanopoulos C, Legrève A, Lorca C, Moreau V, Steyer S, Maraite H & Bragard C, 2006. Widespread occurrence of wheat spindle streak mosaic virus in Belgium. Plant Dis 90, 723–728.

    Article  Google Scholar 

  • Vallega V & Rubies-Autonell C, 1985. Reactions of Italian triticum-durum cultivars to soil-borne wheat mosaic virus. Plant Dis 90, 7234–728.

    Google Scholar 

  • Van Koevering M, Haufler KZ, Fulbright DW, Isleib TG & Everson EH, 1987. Heritability of resistance in winter wheat to wheat spindle streak mosaic virus. Phytopathology 77, 742–744.

    Article  Google Scholar 

  • Whelan JA, Russell NB & Whelan MA, 2003. A method for the absolute quantification of cDNA using real-time PCR. J Imm Meth 278, 261–269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Ziegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziegler, A., Klingebeil, K., Papke, V. et al. Quantification of Wheat spindle streak mosaic virus and Soil borne cereal mosaic virus in resistance testing of field samples of triticale using real-time RT-PCR. J Plant Dis Prot 121, 149–155 (2014). https://doi.org/10.1007/BF03356503

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356503

Key words

Navigation