Skip to main content
Log in

UV exposure induces resistance against herbivorous insects in broccoli

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

UV-radiation (UV-A and UV-B) can affect the behaviour of herbivorous insects either directly or indirectly through plantinsect interactions. Short-wavelength radiation is perceived by plants through specific receptors which results particularly in the biosynthesis of secondary plant metabolites. Known induced substances are mainly flavonoids which primarily act as sunscreens, but also have the potential to influence the development of herbivorous insects. This study investigated the development of the cabbage aphid (Brevicoryne brassicae, Hemiptera: Aphididae) and the diamondback moth (Plutella xylostella, Lepidoptera: Plutellidae) on UV-exposed broccoli plants (Brassica oleracea, Brassicales: Brassicaceae). Constant low-intensity UV-radiation emitted by UV-lamps in the greenhouse increased the developmental time of both insect species. On UV-exposed plants P. xylostella reached lower pupa weights, while B. brassicae showed higher adult weights, but significantly reduced fecundity compared to aphids on plants isolated from UV-radiation. In outdoor experiments the global UV-radiation was manipulated in small greenhouses equipped with plastic-films of different UV-absorbing properties. The reduction of ambient UV-radiation by UV-absorbing plastic-films resulted in increased pupa weight of P. xylostella and fecundity of B. brassicae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bidart-Bouzat MG & Kliebenstein D, 2011. An ecological genomic approach challenging the paradigm of differential plant responses to specialist versus generalist insect herbivores. Oecologia 167, 677–689.

    Article  PubMed  Google Scholar 

  • Caputo C, Rutitzky M & Ballare CL, 2006. Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L.): impacts on oviposition and involvement of the jasmonic acid pathway. Oecologia 149, 81–90.

    Article  PubMed  Google Scholar 

  • Christie JM, 2007. Phototropin Blue-Light Receptors. Annu Rev Plant Biol 58, 21–45.

    Article  CAS  PubMed  Google Scholar 

  • Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A, Kelly SM, Hothorn M, Smith BO, Hitomi K, Jenkins GI & Getzoff ED, 2012. Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of crossdimer salt bridges. Science 335, 1492–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chyzik R, Dobrinin S & Antignus Y, 2003. Effect of a UVdeficient environment on the biology and flight activity of Myzus persicae and its hymenopterous parasite Aphidius matricariae. Phytoparasitica 31, 467–477.

    Article  Google Scholar 

  • Comont D, Abaigar JM, Albert A, Aphalo P, Causton DR, Figueroa FL, Gaberscik A, Llorens L, Hauser MT, Jansen M, Kardefelt M, Luque PD, Neubert S, Nunez-Olivera E, Olsen J, Robson M, Schreiner M, Sommaruga R, Strid A, Torre S, Turunen M, Veljovic-Jovanovic S, Verdaguer D, Vidovic M, Wagner J, Winkler JB, Zipoli G & Gwynn-Jones D, 2012. UV responses of Lolium perenne raised along a latitudinal gradient across Europe: a filtration study. Physiol Plantarum 145, 604–618.

    Article  CAS  Google Scholar 

  • Demkura PV, Abdala G, Baldwin IT & Ballare CL, 2010. Jasmonate-dependent and -independent pathways mediate specific effects of solar ultraviolet B radiation on leaf phenolics and antiherbivore defense. Plant Physiol 152, 1084–1095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diffey BL, 2002. What is light? Photodermatol Photo 18, 68–74.

    Article  Google Scholar 

  • Foggo A, Higgins S, Wargent JJ & Coleman RA, 2007. Tri-trophic consequences of UV-B exposure: plants, herbivores and parasitoids. Oecologia 154, 505–512.

    Article  PubMed  Google Scholar 

  • Gabrys B & Tjallingii WF, 2002. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol Exp Appl 104, 89–93.

    Article  CAS  Google Scholar 

  • Gulidov S & Poehling HM, 2013. Control of aphids and whiteflies on Brussels sprouts by means of UV-absorbing plastic films. J Plant Dis Protect 120, 122–130.

    Google Scholar 

  • Harborne JB & Williams CA, 2000. Advances in flavonoid research since 1992. Phytochem 55, 481–504.

    Article  CAS  Google Scholar 

  • Izaguirre MM, Mazza CA, Svatos A, Baldwin IT & Ballare CL, 2007. Solar ultraviolet-B radiation and insect herbivory trigger partially overlapping phenolic responses in Nicotiana attenuata and Nicotiana longiflora. Ann Bot 99, 103–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins GI, 2009. Signal Transduction in Responses to UV-B Radiation. Ann Rev Plant Biol 60, 407–431.

    Article  CAS  Google Scholar 

  • Krizek DT, Mirecki RM & Britz SJ, 1997. Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cucumber. Physiol Plantarum 100, 886–893.

    Article  CAS  Google Scholar 

  • Kuhlmann F & Müller C, 2009. Development-dependent effects of UV radiation exposure on broccoli plants and interactions with herbivorous insects. Environ Exp Bot 66, 61–68.

    Article  CAS  Google Scholar 

  • Kuhlmann F & Müller C, 2010. UV-B impact on aphid performance mediated by plant quality and plant changes induced by aphids. Plant Biol 12, 676–684.

    CAS  PubMed  Google Scholar 

  • Kuhlmann F & Müller C, 2011. Impacts of ultraviolet radiation on interactions between plants and herbivorous insects: A chemo-ecological perspective. Prog Bot 72, 305–347.

    Article  CAS  Google Scholar 

  • Kumar P & Poehling HM, 2006. UV-blocking plastic films and nets influence vectors and virus transmission on greenhouse tomatoes in the humid tropics. Environ Entomol 35, 1069–1082.

    Article  Google Scholar 

  • Lindroth RL, Hofmann RW, Campbell BD, McNabb WC & Hunt DY, 2000. Population differences in Trifolium repens L-response to ultraviolet-B radiation: foliar chemistry and consequences for two lepidopteran herbivores. Oecologia 122, 20–28.

    Article  Google Scholar 

  • McCloud ES & Berenbaum M, 1999. Effects of enhanced UV-B radiation on a weedy forb (Plantago lanceolata) and its interactions with a generalist and specialist herbivore. Entomol Exp Appl 93, 233–247.

    Article  Google Scholar 

  • Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, Lohse M & Zrenner R, 2012. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: Induced signaling overlaps with defense response to biotic stressors. Plant Cell Physiol 53, 1546–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul ND & Gwynn-Jones D, 2003. Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecol Evol 18, 48–55.

    Article  Google Scholar 

  • Paul ND, Moore JP, McPherson M, Lambourne C, Croft P, Heaton JC & Wargent JJ, 2012. Ecological responses to UV radiation: interactions between the biological effects of UV on plants and on associated organisms. Physiol Plantarum 145, 565–581.

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar S & the R Development Core Team, 2012. nlme: Linear and nonlinear mixed effects models. R package version 3.1-106.

    Google Scholar 

  • R Development Core Team, 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna & Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

    Google Scholar 

  • Renwick JAA, Haribal M, Gouinguene S & Stadler E, 2006. Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella. J Chem Ecol 32, 755–766.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner M, Mewis I, Huyskens-Keil S, Jansen, MAK, Zrenner R, Winkler JB, O’Brien N & Krumbein A, 2012. UV-B-induced secondary plant metabolites — Potential benefits for plant and human health. Crit Rev Plant Sci 31, 229–240.

    Article  CAS  Google Scholar 

  • Simmonds MS, 2001. Importance of flavonoids in insectplant interactions: feeding and oviposition. Phytochemistry 56, 245–252.

    Article  CAS  PubMed  Google Scholar 

  • Soler R, Badenes-Perez FR, Broekgaarden C, Zheng SJ, David A, Boland W & Dicke M, 2012. Plant-mediated facilitation between a leaf-feeding and a phloem-feeding insect in a brassicaceous plant: from insect performance to gene transcription. Funct Ecol 26, 156–166.

    Article  Google Scholar 

  • Terry M, Therneau T & Grambsch PM, 2000. Modeling Survival Data: Extending the Cox Model. Springer, New York. ISBN 0-387-98784-3.

    Google Scholar 

  • War AR, Paulraj MG, Hussain B, Buhroo AA, Ignacimuthu S & Sharma HC, 2013. Effect of plant secondary metabolites on legume pod borer, Helicoverpa armigera. J Pest Sci 86, 399–408.

    Article  Google Scholar 

  • Wickham H, 2009. ggplot2: elegant graphics for data analysis. Springer, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Michael Poehling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechner, O., Poehling, HM. UV exposure induces resistance against herbivorous insects in broccoli. J Plant Dis Prot 121, 125–132 (2014). https://doi.org/10.1007/BF03356500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356500

Key words

Navigation