Advertisement

Journal of Plant Diseases and Protection

, Volume 121, Issue 2, pp 89–95 | Cite as

Changes in the expression of mitochondrial cytochrome oxidase subunits due to pyrethroid intoxication in pyrethroid-resistant pollen beetles, Meligethes aeneus (Coleoptera: Nitidulidae)

  • Przemysław Wieczorek
  • Paweł Węgorek
  • Dorota Protasewicz
  • Joanna Zamojska
  • Marta Budziszewska
  • Marek Mrówczyński
  • Aleksandra Obrępalska-Stęplowska
Article

Abstract

Pollen beetle (Meligethes aeneus, Coleoptera: Nitidulidae) is the most important pest of oilseed rape in Europe, causing great yield losses. Due to the heavy use of pyrethroid insecticides in controlling Meligethes, a widespread build-up of resistance to pyrethroid active substances has arisen, reported in many countries where the pest occurs. Mutations in the voltage-sensitive sodium channels (VSSC), which constitute the main targets for the pharmacological action, as well as increased oxidative metabolism of pyrethroid active substances in resistant populations are considered, as they are the main molecular mechanisms of the development of pyrethroid resistance.

In this study we have analyzed the level of expression of mitochondrial cytochrome oxidase subunit genes (mtCOI, mtCOII) in esfenvalerate-treated populations of M. aeneus collected in 2011 by using the real-time PCR approach. Our results indicate that the esfenvalerate-treated beetles have a significantly higher mtCOI gene expression compared with the untreated ones and that the mtCOII transcript level is also slightly induced. This enhanced expression might, in part, be responsible for the increased oxidative metabolism in pyrethroid-challenged pollen beetle populations.

Key words

gene expression induction insecticide resistance pyrethroids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelman ZN, Kikcullen KA, Koganemaru R, Anderson MAE, Anderson TD & Miller DM, 2011. Deep sequencing of pyrethroid-resistant bed bugs reveals multiple mechanisms of resistance within a single population. PLoS One 6, e26228.Google Scholar
  2. Cabrera JA, Ziemba EA, Colbert R, Anderson L, Sluiter W, Duncker DJ, Butterick TA, Sikora J, Ward HB, Kelly RF & McFalls EO, 2012. Altered expression of mitochondrial electron transport proteins and improved myocardial energetic state during late ischemic preconditioning. Am J Physiol — Heart Circul Physiolol 302, H1974–1982.CrossRefGoogle Scholar
  3. Chen XJ & Butow RA, 2005. The organization and inheritance of the mitochondrial genome. Nat Rev Gen 6, 815–825.CrossRefGoogle Scholar
  4. Curole JP, Meyer E, Manahan DT & Hedgecock D, 2010. Unequal and genotype-dependent expression of mitochondrial genes in larvae of pacific oyster Crassostrea gigas. Biol Bull 218, 122–131.PubMedGoogle Scholar
  5. Davies TGE, Field LM, Usherwood PNR & Williamson MS, 2007. DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB-Life 59, 151–162.CrossRefPubMedGoogle Scholar
  6. Derron JO, Leclech E, Bezencon N & Goy G, 2004. Résistance des méligčthes du colza aux pyréthrinoďdes dans le basin lémanique. Revue Suisse Agriculture 36, 237–242.Google Scholar
  7. Dong K, 2007. Insect sodium channels and insecticide resistance. Invert Neurosci 7, 17–30.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duborjal H, Beugnot R, de Camaret BM & Issartel JP, 2002. Large functional range of steady-state levels of nuclear and mitochondrial transcripts coding for the subunits of the human mitochondrial OXPHOS system. Genome Res 12, 1901–1909.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Fernandez-Silva P, Enriquez J & Montoya J, 2003. Replication and transcription of mammalian mitochondrial DNA. Exp Physiol 88, 41–56.CrossRefPubMedGoogle Scholar
  10. Finney DJ, 1952. Probit analysis, A statistical treatment of the sigmoid response curve. London, UK: Cambridge University Press. pp. 2: 236–245.Google Scholar
  11. Heimbach U, Muller A & Thieme T, 2006. First steps to analyse pyrethroid resistance of different oil seed rape pests in Germany. Nachrichtenbl Dt Pflanzenschutzd 58, 1–5.Google Scholar
  12. Hodgson E & Levi PE, 1998. Interactions of piperonyl butoxide with cytochrome P450. In: Jones DG, ed., Piperonyl butoxide the insecticidal synergist. London: Academic Press. pp. 41–53.Google Scholar
  13. Hopkins BW, Longnecker MT & Pietrantonio PV, 2011. Transcriptional overexpression of CYP6B8/CYP6B28 and CYP6B9 is a mechanism associated with cypermethrin survivorship in field-collected Helicoverpa zea (Lepidoptera: Noctuidae) moths. Pest Manage Sci 67, 21–25.CrossRefGoogle Scholar
  14. Łąkocy A, 1977. The influence of some biological and ecological factors on the development of resistance to insecticides and on the course of chemical control of Meligethes aeneus F. in the Voivodships of Poznan and Wroclaw. Science Dissertations Published by Institute of Plant Protection — National Research Institute 19, 123–181.Google Scholar
  15. Moores G, Węgorek P, Zamojska J, Field L & Philippou D, 2012. The effect of a piperonyl butoxide/tau-fluvalinate mixture on pollen beetle (Meligethes aeneus) and honey bees (Apis mellifera). Pest Manage Sci 68, 795–800.CrossRefGoogle Scholar
  16. Ministry of Agriculture and Rural Development, 2012. The register of plant protection products. www.bip.minrol.gov.pl.Google Scholar
  17. Narahashi T, 2000. Neuroreceptors and ion channels as the basis for drug action: past, present and future. J Pharmacol Exp Ther 294, 1–26.PubMedGoogle Scholar
  18. Nauen R, 2007. Pyrethroid resistance and its management in European populations of pollen beetles, Meligethes aeneus, in winter oilseed rape. Proceeding of XVI International Plant Protection Congress, 7B-3, 522–523.Google Scholar
  19. Obrępalska-Stęplowska A, Nowaczyk K, Hołysz M, Gawlak M & Nawrot J, 2008. Molecular techniques for the detection of granary weevil (Sitophilus granarius L.) in wheat and flour. Food Addit Contam Part B, 25, 1179–1788.CrossRefGoogle Scholar
  20. Obrępalska-Stęplowska A, Węgorek P, Nowaczyk K & Zamojska J, 2006. The study on pyrethroid resistance in pollen beetle Meligethes aeneus. Acta Biochim Pol 53, 198–199.Google Scholar
  21. Philippou D, Field LM, Węgorek P, Zamojska J, Andrews MC, Slater R & Moores GD, 2011. Characterising metabolic resistance in pyrethroid-insensitive pollen beetle (Meligethes aeneus F.) from Poland and Switzerland. Pest Manage Sci 67, 239–243.CrossRefGoogle Scholar
  22. Pridgeon JW, Becnel JJ, Clark GG & Linthicum KJ, 2009. Permethrin induces overexpression of multiple genes in Aedes aegypti. J Med Entomol 46, 580–587.CrossRefPubMedGoogle Scholar
  23. Pridgeon JW & Liu N, 2003. Overexpression of the cytochrome c oxidase subunit I gene associated with a pyrethroid resistant strain of German cockroaches, Blatella germianica (L). Insect Bioch Mol Biol 33, 1043–1048.CrossRefGoogle Scholar
  24. Richardson DM, 2008. Summary of findings from a participant country pollen beetle questionare. EPPO Bull 38, 68–72.CrossRefGoogle Scholar
  25. Sinha AK, Vanparys C, de Boeck G, Kestemont P, Wang N, Phuong NT, Scippo M-L, de Coen W & Robbens J, 2010. Expression characteristics of potential biomarker genes in Tra catfish, Pangasianodon hypophthalmus, exposed to trichlorfon. Comparat Biochem Physiol D5, 207–216.Google Scholar
  26. Skillman WS, 2007. Use of the synergist piperonyl butoxide in combination with a pyrethroid insecticide lambda-cyhalothrin against metabolically resistant pollen beetle, Meligethes aeneus. Presentation Abstract, EPPO Workshop on insecticide resistance of Meligethes ssp. (pollen beetle) on oilseed rape. Berlin, 3–5 September 2007, www.archives.eppo.org/MEETINGS/2007.Google Scholar
  27. Slater R, Ellis S, Genay JP, Heimbach U, Huar G, Sarazin M, Longhurst C, Muller A, Nauen R, Rison JL & Robin F, 2011. Pyrethroid resistance monitoring in European populations of pollen beetle (Meligethes spp.): a coordinated approach through the Insecticide Resistance Action Committee (IRAC). Pest Manage Sci 67, 633–638.CrossRefGoogle Scholar
  28. Węgorek P, Obrępalska-Stęplowska A, Zamoyska J & Nowaczyk K, 2006. Resistance of Pollen beetle (Meligethes aeneus F.) in Poland. Resistant Pest Manage News 16, 28–29.Google Scholar
  29. Węgorek P & Zamoyska J, 2008. Current status of resistance in pollen beetle (Meligethes aeneus F.) to selected active substances of insecticides in Poland. EPPO Bull 38, 91–94.CrossRefGoogle Scholar
  30. Węgorek P, 2009. Research on pollen beetle (Meligethes aeneus F.) resistance to insecticides. Habilitation thesis (in Polish, English summary). Science Dissertations Published by Institute of Plant Protection — National Research Institute, 1–123 ISSN: 1730-038X, 123pp.Google Scholar
  31. Węgorek P, Mrówczyński M & Zamojska J, 2009. Resistance of pollen beetle (Meligethes aeneus F.) to selected active substances of insecticides in Poland. J Plant Protect Res 49, 119–127.Google Scholar
  32. Węgorek P, Zamojska J & Mrówczyński M, 2011. High resistance to pyrethroid insecticides in Polish pollen beetle (Meligethes aeneus F.) — the role of oxidative metabolism. Phytoparasitica 39, 43–49.CrossRefGoogle Scholar
  33. Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Erte A, Pestell RG, Broda P, Minetti C, Lisanti MP & Sotgia F, 2011. Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effect of metformin in tumor tissue. Cell Cycle 10, 4047–4064.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wilkinson CV, Murray M & Marcus CB, 1984. Interaction of methylenedioxyphenyl compounds with cytochrome P-450 and microsomal oxidation. Rev Bioch Toxicol 6, 27–63.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2014

Authors and Affiliations

  • Przemysław Wieczorek
    • 1
  • Paweł Węgorek
    • 2
  • Dorota Protasewicz
    • 1
  • Joanna Zamojska
    • 2
  • Marta Budziszewska
    • 1
  • Marek Mrówczyński
    • 1
  • Aleksandra Obrępalska-Stęplowska
    • 1
  1. 1.Interdepartmental Laboratory of Molecular BiologyInstitute of Plant Protection — National Research InstitutePoznańPoland
  2. 2.Department of ZoologyInstitute of Plant Protection — National Research InstitutePoznańPoland

Personalised recommendations